@article{SEDP_1970-1971____A30_0, author = {Wilcox, C. H.}, title = {A coerciveness inequality for a class of nonelliptic operators and its applications}, journal = {S\'eminaire \'Equations aux d\'eriv\'ees partielles (Polytechnique) dit aussi "S\'eminaire Goulaouic-Schwartz"}, note = {talk:30}, pages = {1--10}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1970-1971}, mrnumber = {410053}, zbl = {0235.35014}, language = {en}, url = {http://www.numdam.org/item/SEDP_1970-1971____A30_0/} }
TY - JOUR AU - Wilcox, C. H. TI - A coerciveness inequality for a class of nonelliptic operators and its applications JO - Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" N1 - talk:30 PY - 1970-1971 SP - 1 EP - 10 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://www.numdam.org/item/SEDP_1970-1971____A30_0/ LA - en ID - SEDP_1970-1971____A30_0 ER -
%0 Journal Article %A Wilcox, C. H. %T A coerciveness inequality for a class of nonelliptic operators and its applications %J Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" %Z talk:30 %D 1970-1971 %P 1-10 %I Ecole Polytechnique, Centre de Mathématiques %U http://www.numdam.org/item/SEDP_1970-1971____A30_0/ %G en %F SEDP_1970-1971____A30_0
Wilcox, C. H. A coerciveness inequality for a class of nonelliptic operators and its applications. Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwartz" (1970-1971), Exposé no. 30, 10 p. http://www.numdam.org/item/SEDP_1970-1971____A30_0/
[1] Scattering theory for wave propagation problems of classical physics by the method of Lax and Phillips, O N R Technical Report #13, University of Denver, March 1971.
, , :[2] Remarks on an inequality of Schulenberger and Wilcox, preprint, University of Washington, 1971. | MR
:[3] Coerciveness inequalities for nonelliptic systems of partial differential equations, Ann. Mat. pura e appl. (Spring 1971). | MR | Zbl
and :[4] The limiting absorption principle and spectral theory for steady-state wave propagation. in inhomogeneous anisotropic media, Arch. Rational Mech. Anal. (Spring 1971). | MR | Zbl
and :[5] A coerciveness inequality for a class of nonelliptic operators of constant deficit, Ann. Math. pura e appl. (to appear). | MR | Zbl
and :[6] Completeness of the wave operators for scattering problems of classical physics, Bull. A.M.S. (to appear 1971). | MR | Zbl
and :[7] Wave operators and asymptotic solutions of wave propagation problems of classical physics, Arch. Rational Mech. Anal., 22, 37-78 (1966). | MR | Zbl
: