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RIESZ VECTOR SPACES AND RIESZ ALGEBRAS

by Lássló FUCHS

Seminaire DUBREIL-PISOT
(Algèbre et Theorie des Nombres)
19e annee, 1965/66, nO 23-24 20 et 23 mai 1966

1. Introduction.

In 1940, F. RIESZ investigated the bounded linear functionals on real function

spaces S, and showed that they form a vector lattice whenever S is assumed to

possess the following interpolation property.

(A) Riesz interpolation property. -If f , g~ are functions

in S such that g j for i = 1 , 2 and j = 1 , 2 , then there is some

h E S such that

Clearly, if S is a lattice then it has the Riesz interpolation property

(choose e. g. h = f 1 v f~ A g 2 ~, but there exist a number of important
function spaces which are not lattice-ordered and have the Riesz interpolation

property. For instance :

(1) The real polynomials in the unit interval 1) where w9 put f > 0 for

a polynomial f if and only if f(x) ~ 0 for all x E (0, 1) (this is the so-
called pointwise ordering).

(2) The rational functions with real coefficients, defined everywhere in (0 , D,
under the pointwise ordering.

(3) For a positive integer k, the k-times differentiable real functions in

(0 , 1) , under the pointwise ordering.

(4) The real analytic functions in (0, 1) , under the pointwise ordering.

(5) The real trigonometric functions in (0, the ordering is pointwise.

(6) The real-valued continuous functions in the unit interval (or more generally,
on a compact Hausdorff space) if f > 0 has the ipeaning f(x) > 0 for all x

(this ordering will be called the ordering by strict inequalities).

(7) The function spaces mentioned in (1)-(5) under the ordering by strict ine-
qualities.

(8) The cartesian product of function spaces with the Riesz interpolation p ro-
perty has again the same property.



As a further example of a partially ordered vector space with the Riesz interpo-

lation property, we may mention the complex numbers (considered as a vector space

over the reals) where x + iy > 0 means x > 0 and y > 0 , or in another order-

ing, x + iy > 0 means x > 0 ( x , y are reals).

These examples whow that it night be of some interest to investigate systemati-

cally the partially ordered vector spaces with the Riesz interpolation property.

Our present aim is to give a brief survey of the results 9 some of the theorems

can be formulated more generally for partially ordered groups. For the proofs, we

refer to our papers 

2. Bas i c definitions.
By a vector space V, we shall mean one over the field R of real numbers. V

is said to be partially ordered if it is partially ordered under a binary relation

~ such that a  b in V implies a + c $ b + c for all c E V and ~a ~ ~b

for all positive real X . The set P of all a E V , satisfying a ~ 0 , is

called the positivity domain of V y and the elements of P are called positive.

P completely determines the partial order of V since a  b is equivalent to

b-» aE P .

V is called directed if, to each pair a, b E V , there exists some c E V

such that a ~ c and b ~ c. V is directed if and only if every element is the

difference of two positive elements.

If for all a, b E V , either a ~ b or b fi a in V , then V is totally

ordered. If V is a lattice under its partial order, then it is called a vector

lattice. We shall write a A b, y a v b for the g. 1. b. (intersection) and the
1. u, be (union) of the elements a, b E V which might exist even if V is not

lattice-ordered. A directed partially ordered vector space with the Riesz inter-

polation property will be called a Riesz vector space. Note that the Riesz inter-

polation property (A) is equivalent to either one of the following conditions :

(B) Decomposition property. - If 0  a  b + b for a bi E V ,

bi ~ 0 , then there exist al ’ a2 E V such that a = al + a2 where

(c) Refinement property. - If a + a~ = b + b for positive elements a. ,

b. of V , then there exist elements c..~0 in V (i =1 ~ 2 ; j= 1 , 2)
J ~-J

such that



A subspace W of a partially ordered vector space V is said to be convex if

a , b E W, x E V and a ~ x ~ b imply x E W . If a subspace is trivially or-

dered (i. e. it contains no two elements a, y b such that a  b ), then it is

necessarily convex. A" o-ideal is defined as a directed convex subspace. If V

has no o-ideals other than the trivial ones, it is called o-simple.

THEOREM 1. - The o-ideals of a Riesz vector space V form a distributive sub-

lattice in the lattice of all subspaces of V .

The factor space V/W of a partially ordered vector space V mod its convex

subspace W becomes a partially ordered vector space if a coset a + W is defined

to be positive whenever it contains a positive vector a + w (w E W) .

THEOREM 2. - If V is a Riesz vector space and I is an o-ideal of V , then

both I and V/I are Riesz vector spaces.

A vector space homomorphism that preserves positivity is called an o-homomorphism.
A’ sector space isomorphism that is order preserving in both directions is said to
be an o-isomorphism.

3. Algebraic theory.
In order to investigate the Riesz vector spaces from the algebraic point of view,

first we have to introduce the simplest and,at the same time,the most important

type of Riesz vector spaces : the antilattices.

In a partially ordered vector space V, y the elements a, b have always a

g. 1. b. a A b whenever a ~ b or b  a . A Riesz vector space A, in which

no other go 1. b. exist~ io e. the existence of a Ab in A implies a n b = a

or a n b = b , is called an antilattice. Because of a v b = - (- a A - b) , the

existence of a v b implies a v b = a or = b in an antilattice, thus an anti-

lattice is a Riesz vector space in which only the trivial g. 1. b. and 1. u, b.

exist.

It is easy to conclude that if a finite number of elements of an antilattice

have a g. 1. b., say ... A a == b , then a. = b for some ’ o

Examples for antilattices are abundant ; 9 see our examples (~,~~,~~(2~, (4)-(7) in
§ 1. Also, all totally ordered vector spaces are antilattices. On the other hand,
an antilattice which is lattice-ordered is a totally ordered vector space.

The following is the structure theorem on Riesz vector spaces. It shows that the

antilattices play a similar role in the theory of Riesz vector spaces as the to-



tally ordered vector spaces in the theory of vector lattices.

THEOREM 3. - To every Riesz vector space V there exists a family of antilatti-

ces A (a E I) and an o-isomorphism y of V onto a subspace of the carte-

sian product fl A such that cp preserves g. 1. be and 1. u, b. too.
 ~il - 

Here the notation n means that an element (..., , a , ...) E ~! A is to be
 a Cc

considered as § 0 if, and only if, 0 for every a E I .

More information about the structure of antilattices may be obtained from the

following two results ,

THEOREM 4. - If A is an antilattice and C is a maximal trivially ordered

subspace of A, then A/C is totally ordered.

Thus an antilattice is an extension of a trivially ordered vector space by a

totally ordered vector spaceo

THEOREM 5. - Assume that A is an antilattice such that the intersection n C

of all maximal trivially ordered subspaces C of A is 0 . Then A can be

embedded o-isomorphically in a cartesian product ~ B~ of totally ordered vector

spaces B j) c

Here H means that ... , b03B2 , ...~ > 0 is defined if, and only if, bo b03B2 > 0
for all 03B2 .

If A is as in theorem 5 and is in addition o-smmple, then all the B are

o-isomorphic to the real numbers, and we get :

THEOREM 6* - If A is an o-simple antilattice such that (1 C = 0 9 then A

is o-isomorphic to a vector space of real-ralued functions on some set 0 where

the ordering is given by strict inequalities.

Note that by choosing suitable isomorphisms B- ~ R , the functions correspon-
ding to elements of A will be bounded.

4. Topological questions.
The continuous functions on a compact Hausdorff space Q are usually furnished

with the uniform topology. This topology may be regarded as the one obtained by
ordering the continuous functions by strict inequalities and then taking as a
subbase of neighbourhoods at 0 the open intervals (- f , f) with functions

f > 0 . In accordance with this remark, we introduce the open-interval topology as
follows.



Let V be a Riesz vector space. For all u > 0 in V , take the open inter-

vals (- u , u) as a subbase of open neighbourhoods at 0 . This gives rise to

a topology on V which will be referred to as the open-interval topology. We

have :

THEOREM 7. - For the open-interval topology of a Riesz vector space V the fol-

lowing hold :

(i) It is Hausdorff if, and only if, the intersection n C of all maximal tri-

vially ordered subspaces C of V is 0 ;

(ii) If it is Hausdorff, then V is topological group in this topology ;

(iii) V is non-discrete in the open-interval topology if, and only if, it is

an antilattice ;

(iv) If V is not non-discrete then every dense subspace of V is an antilat-

tice.

Notice that the hypothesis of theorem 5 is thus equivalent to a simple topolo-

gical condition.

Let A be an antilattice that is a Hausdorff space in the open-interval topolo-

gy. We know by (ii) that A is then a topological group, and so we may ask for

the structure of its topological completion A* ..By standard results on topolo-
gical groups, A* is again a topological group which is, in addition, a vector

space over R . If Air is constructed by means of Cauchy nets, and if we call a

Cauchy net positive whenever it contains a net consisting of positive elements,

then one readily checks that A* is likewise a partially ordered vector space.

If A is, in particular, the antilattice of all polynomials in (0, 1) under

the ordering by strict inequalities, then A* is just the vector space of all

continuous functions in (0, 1) , thus A* is a vector lattice in this case.

This is, however, not true in general, as is shown for instance by our example (1)
in § 1.

We shall say that the antilattice A has the approximation property, or A is

an approximation antilattice, if the following condition is satisfied o Given

a , b E A and u > 0 in A , there exists a , c e A such that c  a , b , and

if x E A satisfies x  a , b then x  c + u . It is easy to see that the ap-

proximation property is necessary for A in order that A* be a vector lattice.

THEOREM 8. - Let A be an antilattice which is Hausdorff in its open interval

topology. Then : 
"



(i) If A is metrizable (i. e. it has a countable system of neighbourhoods at

0), then its topological completion A* is a Riesz vector space ;

(ii) A* is a vector lattice if,and only if, A has the approximation property.

The canonical map of A into A~’ is of course a continuous isomorphism, but it

is not necessarily an o-isomorphism. The embedding A ~ A~’ preserves order re-

lations, but the image of A in A~~ contains more positive elements in general,

namely, the positivity domain of the image of A in A~~ is the least closed set

P containing the image of the positivity domain P of A . For instance, if A

is the vector space of polynomials in (0 , 1) under the ordering by strict ine-

qualities, then in A* a polynomial f will be positive if it can be approximated

by polynomials positive in A, i. e. in the image of A in A~~ the ordering will

be pointwise.

Let L be a vector lattice. We say that L can be approximated by the antilat-

tice A, if :

(a) A is a vector subspace of L ( A denotes the partially ordered vector

space obtained from A by replacing its positivity domain P by its clusure P ~.

(b) The completion A* of A is a vector lattice containing L as a vector

sublattice. :

THEOREM 9. - Let L be a vector lattice. There exists an antilattice A approxi-

mating L such that A = L , and every dense subspace B of A is an antilattice

approximating L  Conversely, if B is an antilattice approximating L , y then

there exists an antilattice A in which B is dense and which satisfies A = L .

It is an open problem in which cases A has a proper dense subspace B.

5. Antilattices whi ch are to pological vector spaces.
Next we turn our attention to antilattices A y which are not only topological

groups, but also topological vector spaces in the open-interval topology. That is

to say, we also assume that the mapping

(~. y a) 2014~ ~a

of R x A into A is continuous (where R carries its usual topology ; actually,
this is its open-interval topology). It is easy to prove :

THEOREM 10. - An antilattice A is a topological vector space in its open-interval

topology if,and only if, it is o-simple.



For the sake of brevity, we shall call an antilattice A that is a topological

vector space topological.

Let us fix some element u > 0 in a topological antilattice A, y and call

U = (- u , u) the unit ball of A . This is justified in view of the fact that, if

for an arbitrary a E A , we set

(which is the well-known Ninkowski functional), then we obtain :

THEOREM 11. - A topological antilattice A is a normed vector space under the

norm ~...~ , and the dual space of A is an abstract Lebesgue space.

Recall that an abstract Lebesgue space is a normed vector lattice which is a real

Banach space such that

The following result gives a fairly good characterisation of topological antilat-

tices.

THEOREM 12. - For every topological antilattice A, y there exists a topological

~-isomorphism ~ of A, y with a subspace of all real-valued continuous functions

on a compact Hausdorff space 0 , where the functions are ordered by strict inequa-
lities. Moreover, 03A6 can be chosen so as to be an isometry as well.

Here Q is the space of all maximal trivially ordered wubspaces of A, fur-

nished with the Gelfand topology.

The following theorem of Stone-Weierstrass type may be mentioned.

THEOREM 13. - If A is a topological antilattice satisfying the approximation
property, then it is o-isomorphic and isometric to a dense subspace of the space
of all real continuous functions on a compact Hausdorff space Q , ordered by
strict inequalities, and the topological completion A* of A is the vector lat-

tice C(Q) of all continuous functions on 03A9 under the pointwise ordering.

6. Riesz algebras.
An algebra over the real numbers is called a partially ordered algebra if is a

partially ordered vector space with the property that its possitivity domain is



closed under algebra multiplication. The last property is equivalent to the condi-

tion that inequalities may be multiplied from the left and from the right by posi-

tive elements.

A partially ordered algebra X is called a Riesz algebra if its underlying vec-

tor space is a Riesz vector space. Our examples (1)-(9) in § 1 are Riesz algebras.

A partially ordered algebra, that is an antilattice, is said to be an antilattice-

algebra.

THEOREM 14. - Every Riesz algebra X can be embedded as an o-ideal in a Riesz

algebra Y with identity e . There is an embedding such that if x A y = 0 for

sope x, y e Y with x , y > 0 then either x E X or and if, e. g.,

x E X then some 3 E X , z > 0 satisf ies x A z = 0 .

Here we have meant by an o-ideal of an algebra X a convex directed algebra

ideal. As a corollary to theorem 14, one obtains that an antilattice-algebra is

o-isomorphic with an o-ideal of an antilattice-algebra with identity.

7. Antilattice-al ebras.
If we introduce the open-interval topology in antilattice algebras, then ring

multiplication need not be continuous in this topology. We are going to give a

criterion for the continuity of ring multiplication.

Call the partially ordered algebra X m-hounded if every a E X satisfies : to

each u > 0 in X , 9 there is some v > 0 in X such that

THEOREM 15. - In an antilattice-algebra X that is a Hausdorff space in the open-

interval topology multiplication is continuous if, and only if, X is m-bounded.

Note that if the additive group of an antilattice-algebra is o-simple, then it

is m-bounded.

For m-bounded antilattice-algebras the analogue of theorem 8 holds.

Let us turn finally to antilattice-algebras which are topological algebras, i. e.

not only topological rings in the open-interval topology, but at the same time to-

pological vector spaces.

THEOREM 16. - An antilattice algebra X which is Hausdorff in its open-interval

topology is a topological algebra if, and only if its underlying vertor space is

o-simple.



The main result is the following representation theorem.

THEOREM 17. - Let X be an antilattice algebra with identity e and assume it

is a Hausdorff space in the open-interval topology. If X is o-simple as a vector

space, then it is o-isomorphic to an algebra of continuous functions on a compact

Hausdorff space Q where the functions are ordered by strict inequalities.

In this case, X is a normed algebra, and the o-isomorphism may be assumed to

be an isometry as well.

Note that we have not a priori supposed that X was associative or commutative,
but our result indicates that it must be both associative and commutative.

If X is as in theorem 17, then its topological completion is a commutative

Banach algebra which is a Riesz algebra too. If, in addition, X enjoys the ap-

proximation property, then its completion is the algebra of all continuous functions

on Q where the functions are ordered pointwise.

If X is the real polynomials in (0 , 1) , ordered by strict inequalities, then
it is easy to see that Q will be homeomorphic to (0 , p 1) .
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