@article{SDPP_1978-1979__20_2_A6_0, author = {Van der Poorten, Alfred J.}, title = {Some wonderful formulae... {Footnotes} to {Apery{\textquoteright}s} proof of the irrationality of $\zeta (3)$}, journal = {S\'eminaire Delange-Pisot-Poitou. Th\'eorie des nombres}, note = {talk:29}, pages = {1--7}, publisher = {Secr\'etariat math\'ematique}, volume = {20}, number = {2}, year = {1978-1979}, zbl = {0423.10019}, language = {en}, url = {http://www.numdam.org/item/SDPP_1978-1979__20_2_A6_0/} }
TY - JOUR AU - Van der Poorten, Alfred J. TI - Some wonderful formulae... Footnotes to Apery’s proof of the irrationality of $\zeta (3)$ JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres N1 - talk:29 PY - 1978-1979 SP - 1 EP - 7 VL - 20 IS - 2 PB - Secrétariat mathématique UR - http://www.numdam.org/item/SDPP_1978-1979__20_2_A6_0/ LA - en ID - SDPP_1978-1979__20_2_A6_0 ER -
%0 Journal Article %A Van der Poorten, Alfred J. %T Some wonderful formulae... Footnotes to Apery’s proof of the irrationality of $\zeta (3)$ %J Séminaire Delange-Pisot-Poitou. Théorie des nombres %Z talk:29 %D 1978-1979 %P 1-7 %V 20 %N 2 %I Secrétariat mathématique %U http://www.numdam.org/item/SDPP_1978-1979__20_2_A6_0/ %G en %F SDPP_1978-1979__20_2_A6_0
Van der Poorten, Alfred J. Some wonderful formulae... Footnotes to Apery’s proof of the irrationality of $\zeta (3)$. Séminaire Delange-Pisot-Poitou. Théorie des nombres, Tome 20 (1978-1979) no. 2, Exposé no. 29, 7 p. http://www.numdam.org/item/SDPP_1978-1979__20_2_A6_0/
[1] Irrationalité de ζ(2) et ζ(3) , "Journées arithmétiques de Luminy", Astérisque n° 61, 1979, p. 11-13. | Numdam | Zbl
. -[2] A note on the irrationality of ζ(2) and ζ(3) , Bull. London math. Soc., t. 11, 1979. | Zbl
. -[3] Advanced combinatorial analysis. - Dordrecht, D. Reidel, 1974.
. -[4] Dilogarithms and associated functions. - London, Macdonald, 1958. | MR | Zbl
. -[5] A proof that Euler missed... Apéry's proof of the irrationality of ζ(3) , The mathematical Intelligencer, Berlin, t. 1, 1978, p. 195-203. | Zbl
. -[6] Some wonderful formulas... an introduction to polylogarithms (manuscript in preparation; to appear in the proceedings of the meeting held at Queen's University, Kingston, Ontario, July, 1979). | MR
. -[7] Hypergeometric series, recurrence relations and some new orthogonal functions, Ph. D. Thesis, University of Wisconsin at Madison, 1978.
. -