@article{SDPP_1976-1977__18_2_A4_0, author = {Terras, Audrey}, title = {Applications of special functions for the general linear group to number theory}, journal = {S\'eminaire Delange-Pisot-Poitou. Th\'eorie des nombres}, note = {talk:23}, pages = {1--16}, publisher = {Secr\'etariat math\'ematique}, volume = {18}, number = {2}, year = {1976-1977}, mrnumber = {551347}, zbl = {0373.10016}, language = {en}, url = {http://www.numdam.org/item/SDPP_1976-1977__18_2_A4_0/} }
TY - JOUR AU - Terras, Audrey TI - Applications of special functions for the general linear group to number theory JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres N1 - talk:23 PY - 1976-1977 SP - 1 EP - 16 VL - 18 IS - 2 PB - Secrétariat mathématique UR - http://www.numdam.org/item/SDPP_1976-1977__18_2_A4_0/ LA - en ID - SDPP_1976-1977__18_2_A4_0 ER -
%0 Journal Article %A Terras, Audrey %T Applications of special functions for the general linear group to number theory %J Séminaire Delange-Pisot-Poitou. Théorie des nombres %Z talk:23 %D 1976-1977 %P 1-16 %V 18 %N 2 %I Secrétariat mathématique %U http://www.numdam.org/item/SDPP_1976-1977__18_2_A4_0/ %G en %F SDPP_1976-1977__18_2_A4_0
Terras, Audrey. Applications of special functions for the general linear group to number theory. Séminaire Delange-Pisot-Poitou. Théorie des nombres, Tome 18 (1976-1977) no. 2, Exposé no. 23, 16 p. http://www.numdam.org/item/SDPP_1976-1977__18_2_A4_0/
[1] A computational technique for determining the class number of a pure cubic field, Math. of Comp., t. 30, 1976, p. 312-323. | MR | Zbl
, , and . -[2] Introductory lectures on automorphic forms. - Princeton, Princeton University Press, 1973 (Publications of the Mathematical Society of Japan, 12 ; Kano Memorial Lectures, 2). | MR | Zbl
. -[3] Reduction theory for arithmetic groups ; and Introduction to automorphic forms, "Algebraic groups and discontinuous subgroups", p. 20-25, and p. 199-210. - Providence, American mathematical Society, 1966 (Proceedings of Symposia in pure Mathematics, 9). | MR | Zbl
. -[4] Dynamical theory of crystal lattices. - London, Oxford University Press, 1956. | Zbl
and . -[5] Multiplicative number theory. - Chicago, Markham, 1967 (Lectures in advanced Mathematics, 1). | MR | Zbl
. -[6] Stanford lectures on selected topics in the geometry of numbers, Stanford University, 1950.
. -[7] Mathematische Werke. - Göttingen, Vandenhoeck und Ruprecht, 1959. | MR | Zbl
. -[8] Lie groups and symmetric spaces, "Battelle Rencontres, 1967, Lectures in Mathematics and physics", p. 1-71. - New York, W. A. Benjamin, 1968. | MR | Zbl
. -[9] Bessel functions of matrix argument, Annals of Math., Series 2, t. 61, 1955, p. 474-523. | MR | Zbl
. -[10] Über Dirichlet-Reihen mit Funktionalgleichung, J. reine und angew. Math., t. 192, 1953, p. 1-23. | MR | Zbl
. -[11] Algebraic number theory. - Reading, Addison-Wesley, 1970. | MR | Zbl
. -[12] On the functional equations satisfied by Eisenstein series. - Berlin, Springer-Verlag, 1976 (Lecture Notes in Mathematics, 544). | MR | Zbl
. -[13] Approximate functional equations for Dirichlet functions, Math. U. S. S. R.-Isvestija, t. 2, 1968, p. 129-179. | MR | Zbl
. -[14] An approximate functional equation for the Dirichlet L-function, Trans. Moscow Math. Soc., t. 18, 1968, p. 101-115. | MR | Zbl
. -[15] Siegel's modular forms and Dirichlet series. - Berlin, Springer-Verlag, 1971 (Lecture Notes in Mathematics, 216). | MR | Zbl
. -[16] On modular functions of one complex variable. - Bombay, Tata Institute, 1964 (Tata Institute of fundamental Research. Lectures on Mathematics, 29). | MR | Zbl
. -[17] Siegel's mean value theorem in the geometry of numbers, Proc. Camb. phil. Soc., t. 54, 1958, p. 139-151. | MR | Zbl
and . -[18] Adam's Prize Essay.
. -[19] On Hecke's modular functions, zeta functions, and some other analytic functions in the theory of numbers, Proc. London math. Soc., Series 2, t. 32, 1931, p. 501-556. | Zbl
. -[20] Automorphic forms of singular weight are singular forms, Math. Annalen, t. 215, 1975, p. 173-193. | MR | Zbl
. -[21] Stable spaces of modular forms (to appear).
. -[22] Harmonic analysis and discontinuous groups in weakly symmetric riemannian spaces with applications to Dirichlet series, J. Indian math. Soc., t. 20, 1956, p. 47-87. | MR | Zbl
. -[23] Lectures on advanced analytic number theory. - Bombay, Tata Institute, 1957 (Tata Institute of fundamental Research. Lectures in Mathematics, 23). | MR | Zbl
. -[24] Analytische Zahlentheorie. - Göttingen, Mathematisches Institut, 1963/64 (Universität Göttingen). | Zbl
. -[25] Gesammelte Abhandlungen. - Berlin, Springer-Verlag, 1966. | MR | Zbl
. -[26] On the problem of unique factorization in complex quadratic fields, "Number theory", p. 41-56. - Providence, American mathematical Society, 1969 (Proceedings of Symposia in pure Mathematics, 12). | MR | Zbl
. -[27] Values of L-functions at s = 1 , III : Totally real fields and Hilbert's 12th problem, Advances in Math., t. 22, 1976, p. 64-84. | Zbl
. -[28] Hilbert's 12th problem and L-series (to appear). | Zbl
. -[29] A generalization of Epstein's zeta function, Nagoya math. J., t. 42, 1971, p. 173-188. | MR | Zbl
. -[30] Functional equations of generalized Epstein zeta functions in several variables, Nagoya math. J., t. 44, 1971, p. 89-95. | MR | Zbl
. -[31] Bessel series expansions of the Epstein zeta function and the functional equation, Trans. Amer. math. Soc., t. 183, 1973, p. 477-486. | MR | Zbl
. -[32] Fourier coefficients of Eisenstein series of one complex variable for the special linear group, Trans. Amer. math. Soc., t. 205, 1975, p. 97-114. | MR | Zbl
. -[33] Some formulas for the Riemann zeta function at odd integer argument resulting from Fourier expansions of the Epstein zeta function, Acta Arithm., Warszawa, t. 29, 1975, p. 181-189. | MR | Zbl
. -[34] The Fourier expansion of Epstein's zeta function for totally real algebraic number fields and some consequences for Dedekind's zeta function, Acta Arithm., Warszawa, t. 30, 1976, p. 187-197. | MR | Zbl
. -[35] The Fourier expansion of Epstein's zeta function over an algebraic number field and its consequences for algebraic number theory, Acta Arithm., Warszawa, t. 32, 1976, p. 37-53. | MR | Zbl
. -[36] A relation between ζK(s) and ζK (s - 1) for any algebraic number field K , "Algebraic number fields ( L-functions and Galois properties)"[1975. Durham], p. 475-483. - London, Academic Press, 1977. | Zbl
. -[37] On a relation between the size of the minima of quadratic forms and the behaviour of Epstein and Dedekind zeta functions in the real part of the critical strip (to appear).
. -[38] Graphing L-functions of Kronecker symbols in the real part of the critical strip (to appear).
, , , . -[39] On the convergence of the continued fraction for the incomplete gamma function and an algorithm for the Riemann zeta function (to appear).
. -[40] Determination of incomplete gamma functions by recursion in the argument (to appear).
. -[41] Sur quelques résultats de Siegel, Summa Bras. Math., t. 1, 1946, p. 21-39. | MR | Zbl
. -[42] Special functions of matrix and single argument in statistics, "Theory and applications of special functions", p. 497-520. - New York, Academic Press, 1975. | MR | Zbl
. -