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ARTIN'S CONJECTURE ON PRIMES WITH PRESCRIBED PRIMITIVE ROOTS

by H. W. LENSTRA, Jr

1. Introduction.

In 1927, E. ARTIN formulated a conjecture about the density of the set of primes
for which a given non-zero integer t is a primitive root. His conjecture would
imply that there exist infinitely many such prime numbers, provided that t # -1
and t # square ; a proviso which is clearly necessary. It is our aim to see what
takes the place of this clearly necessary provisc in certain generalized forms of

Artin's conjecture.

To give an example, suppose that, besides requiring that t is a primitive root

modulo the prime q , we also require that q is in a given arithmetic progression:

b mod ¢ (b, ¢ integers, (b, c) =1).

]

q

Under which conditions on t , b , ¢ is it reasonable to expect that there are
infinitely many such q ? We should not think of both requirements on q being in=-
dependent : if, for example, q is required to be 1 mod 8 , then 2 will be a
square mod q , hence no primitive root. Similarly, but more subtly, one observes
%hat there are no primes q which are 3 mod 4 for which 27 is a primitive root :
since 27 is a third power, such q would have to be 2 mod 3 , so 11 mod 12,

and 27 would be a square mod g « The question is to list all such obstructions.

The generalized form of Artin's conjecture we have in mind is stated in section 2.
The derivation follows Artin's original heuristics. The status of the conjecture is
discussed in section 3. The question under which conditions the set of primes under
consideration may be expected to be infinite is answered in section 4. In section 5,
we discuss some examples. Among these is an applicafion to the existence of a eu-

clidean algorithm in rings of arithmetic type.

2. A generalization of Artin's conjecture.

Let X be a global field. By a prime p of K we mean a non-archimedean prime
divisor of K ; its residue class field is denoted by ?i ’ and*.ﬁz = E£ - {0} .
Next, let W ©be an infinite, finitely generated subgroup of K =K - {0} . Clear-
‘ly, for all but finitely many p , there is a natural group homomorphism W ——e’K: ’

and we are interested in those p for which
*
(2-1) the natural map W-——a'Kp is surjective.

Thus, in the case of Artin's original conjecture one should take W =<t >, the

subgroup generated by t .
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let T be a finite Galois extension of X , with group & . By (p , F/K) , we

denote the Frobenius symbol

(p ,'F/K) = {oc € 8 : there is a prime q of F extending p , such that

ox =x P mod q for all q-integral x € F} .

This is a non-empty subset of & , and it is a conjugacy class if p is unrami-
fied in F/K .Let C S8 be a subset which is a union of conjugacy classes. The
condition

(2.2) (p, F/K) =¢C

can, for suitable choices of F and C , be used to express various requirements

on p : thet certain polynomials should, or should not, have a zero mod p ; that p»p
belongs to a certain arithmetic progression or, if say, K = Q , is represented by
a certain binary quadratic form ; or any finite logical combination of such condi-

tions.

We denote by M =M(K , W, F, C) the set of primes p of K satisfying both
conditions (2.1) and (2.2). We are interested in a formula for the density of M .
Here "density" means Dirichlet density in the function field case, and natural
density in the number field case.

The heuristic derivation of such a formula is classical. For a positive square-
free integer n , not divisible by char(K) , let L = K(g, » wl/n) , with ¢ a
primitive n-th root of unity. Then a standard argument shows that, for all but fi-

nitely many primes p of K , the prime p satisfies (2.1) if, and only if,
(2.3) (p, L,/X) # {id, }
)] Lﬂ,

for all prime numbers 4 # char(K) . Let I—ln be the set of primes p satisfying
(2.3) , for all prime numbers 4 dividing n , and (2.2).

Then Mm 2 Mn if n is a multiple of m , and M differs by only finitely many
elements from the "1limit" ﬂn Mn . The density of Mn is easily calculated using

Tchebotarev!s theorem :

It ¢ ={oe Gal(F.Ln/K) : (o|F) e ¢, and (o]L;) # id for all prime num-
s £
bers 4 dividing n} ,
then, if p is outside some finite set, pe M  if, and only if, (p,F.Ln/K) <C-
So Pchebotarev!s theorem implies that the density d(Mn) of Mn exists and equals
a_ , where
n

a, = #Cn/[F.Ln:K] .

We have a, za, if n is a multiple of m , so if we let n range over all

squarefree positive integers not divisible by char(X) , ordered by divisibility,

then the sequence (an) has a limit, which we call a

a=1im a_ .
n n

Since 1. is the 1limit of the sets Mn , this leads to the following conjecture.
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(244) CONJECTURE. - The density d(M) exists and equals a .

3+ The status of the conjecture.

In 1967, HOOLEY proved Artin's original conjecture (With a corrected formula for
the conjectural density) on the assumption of a sequence of generalized Riemann
hypotheses [4]. Not surprisingly, the various generalizations do not affect the sta-

tus of the conjecture.

(3.1) TEEOREM. - If K is a number field, then (2.4) is true if for every n

the (-function of Ln satisfies the generalized Riemann hypothesis. If K 1is a

function field, then (2.4) is true.

In the function field case, BILHARZ [1] proved a version of Artin's conjecture
modulo the Riemann hypothesis for curves over finite fields, which was later shown
by WEIL to be correct. From what BILHARZ actually proved ([1], p. 485), it is not
hard to derive the more general statement in (2.4) (Cf. [4]).

We turn to the number field case. Generalizing Hooley's approach, COOKE and
WEINBERGER [2] proved a result implying (2.4) for F/K abelian, modulo certain ge-
neralized Riemann hypotheses. Using a device employed in the proof of Tchebotarev's
theorem as given in [5], p. 169, one easily reduces (2.4) to the case F/K is
abelian, and this gives the statement in (3.1), with a different set of Riemann hy-
potheses. A simpler approach is based on the observation that the condition (2.2)

may be disregarded in the proof of (2.4), i. e.
(3.2) If (2.4) is true in the case F =K , it is generally true.

To see this, notice that the arguments in section 1 yield at least an upper bound
for the upper denmsity a (M) of M : Since M € mou (finite set) , we have

at(m) < (i ) =a for all n, so in the limit
) <a

Applying this to the set M!' = M(K s W, F,8 - C) , we find d%(M')~$ at ,
where a' denotes the conjectural density of M! . Since the case F =K of (2.4)

asserts that d(M u M') = a + a' we conclude that
a"(m) za@ M) - d @) >(a+ a') -a! =a,

80 d(M) = a , which proves (3.2). Combining (3.2) with a special case of the re-
sult of COOKE and WEINBERGER, we obtain the number field part of (3.1).

4, The non~vanishing of a .

In the applications of Artin's conjecture, it is of obvious practical importance
to know under which conditions a vanishes. The following theorem answers this

question, at least in principle.
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(4.1) THEOREM., -~ We have a =0 if, and only if, a, = O for some n . Moreover,

iﬁ a =0 then the set M is finite.

That a, = 0 implies a = 0 is obvious from the monotonicity of the limit
a= limn a Further, if a, = 0 , then from section 1, we know that Mn , and
hence 1II , is finite., Thus it suffices to prove that a = 0 implies a, = 0 for

sone n .

In the number field case, this is done as in Artin's original conjecture, by
expressing a as an infinite product. Let n be the product of those prime num-

bers 4 which satisfy at least one of the following conditions :

L=2;
4 divides the discriminant of F over Q ;
* %
the natural map w/wz-—a K /X % is not injective ;

there is a prime p of K 1lying over £ such that
ordp(w) #0 for some weW,

It is easily seen that n is finite. Let m =n Zl 22 ees & be any squarefree

t

number divisible by =n , with il y £ ces Zt prime numbers. Then one checks

2 ’
that the field F.Lm is the linear disjoint composite of the fields F.Ln s Ly
1%2 g eee I%t over K , and that [in : K] = ¢(zi).z§ where 1r denotes the

rank of W modulo its torsion subgroup and ¢ the Buler-function. An easy calcu-
lation then yields

1

(1 - ———
m(zi)zi

so in the limit
a=a, T& (1 - __i'ﬁg)
@(ﬁ)i
the product ranging over all prime numbers 4 not dividing n . Since the product
is absolutely convergent and all factors are non-zero, we conclude that a can

only vanish if a does.
This proves (4.1) in the number field case.
In the function field case this argument collapses :

Here cyclotomic extensions of K are constant field extensions, and outside any
finite set of prime numbers one can find prime numbers 4 and L' such that Lz
and LE’ are not linearly disjoint over X .

Instead a rather more delicate treatment is required, into the details of which
we do not wish to enter. Suffice it to say that, as in the number field case, the

nmumber n can be explicitly constructed.

In principle, it is possible, using (4.1) and its proof, to decide whether a # 0

in a given situation : all one has to do is considering the Galois extension
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F.Ln/K and investigating whether or not Cn is empty, where n is the value
vielded by the proof of (4.1). For this procedure to be practicable, it is desira-
ble that n be small, This is, essentially, what is achieved by the following

theoren,

(4.2) THEOREM. - Let h be the product of all prime mumbers &£ # char(K) for
kiy
which W <K 4

F(Qh) such that

. Then a #0 if, and only if, there is an automorphism o of

(c|lF)e ¢ ;

(c]Lz) # isz for all prime mumbers 4 for which L, © F(gh) .

In many applications, the number h in (4.2) is 1. Combining (4.1), (4.2) and
(3.1) we obtain the following theorem,

(4.3) THEOREM. - Suppose there exists no prime number 4 # char(K) for which

#*
W<ekK 4 o« Then the set M is finite if and, modulo the Riemann hypotheses, only if,

¢ c UZ Gal(F/Lz) , the union ranging over those prime numbers 4 # char(K) for

which L, < F ,

&

The existence of o in (4.2) is clearly equivalent to the condition a, #0,
where n now denotes the product of all prime numbers 4 with Lz - F(gh) « S0
the "only if" part of (4.2) is obvious. To prove the "if" part it suffices, by
(4.1), to show that ahjéo implies am#O for every squarefree multiple m=n£l...$t
of n, with zl,...,zt prime numbers # char(K) . To this end one proves the fol-

lowing lemma ¢

(4.4) LEMMA. - Let £ be a prime number, & # char(X) , with Lz # F(gh) + Then
the degree [F(Qh)'LzzF(gh)] is divisible by ¢ , and all prime numbers dividing

this degree are < 4 .

Applying (4.4) to Zl y 22 y eee o zt , and assuming that ﬂl < 22 < eee < &
we find that in the chain of t + 1 fields

% ’

F(g,) © F(gh)'L”1 < P(gy) L, .L£2 C ... < F(r,;h).LJal e L,

1 t

the i-th extension has a degree which is divisible by ﬁi y for 1 <igt.

In particular, this degree is > 1, so no two of the t + 1 fields coincide,

Thus, we can extend the automorphism o step-wise to an automorphism T of

F(Qh)-Lzl e th = F(Ch).Lm such that

Tlei # identity on in ,

for 1i=1, 2, eee , t »

By definition of C_, this means a_ # 0 , as required.
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5. Examples.

(5.1) THEOREM. - Let b 4 ¢ be positive integers, (b,c) =1, and let t €Q,
t#0, 1, -1.Lt oft) denote the discriminant of Q(/E) over Q . Then the

set of prime numbers q in the arithmetic progression b , b+ c¢c , b+ 2C , eee

for which t is a primitive root is finite if and, modulo certain generalized

Riemann hypotheses, only if, one of the following conditions is satisfied :

*
(a) #lc, =1 mod i, teq £ for some prime number 4 ;

—~

(b) olt)]e , (9451) = 1 (Kronecker-symbol) ;
(c) ot)|3e, 3[alt) , (-‘-—°’-(-%)—/—3-) =1, teg”,

To prove this theorem, we apply (3.1) and (4.2) to the set M=M£Qf<t>tg(gc)’{°b})’
where 9y is the automorphism of gﬂgc) mapping ;c to CS » It is then found
that I is finite if and, modulo the Riemann hypotheses, only if, ~@(§c , ;h)
does not have an automorphism satisfying certain requirements ; here h is the pro-
duct of those prime numbers £ for which t is an 4-th power in Q. A straight—-
forward analysis shows that the only obstructions preventing the existence of such

an automorphism are the conditions (a), (b) and (c¢), and (5.1) follows.

It may be remarked that the "if'"-part of (5.1) has a direct proof, using nothing
more than quadratic reciprocity. In fact, it turns out that in each of the situa-~
tions (a), (b) and (c) the set of primes in question either is empty or only con-
tains the prime 2. But our approach has the advantage that one need not know before-
hand the list of exceptional situations : they are just the obstructions encounte-
red during the construction of o , and if in all other situations o can be cons-—

tructed one knows that the 1list is complete (modulo the Riemann hypotheses).

Our next example is taken from COOKE and WEINBERGER [2]. Let S be a finite set
of prime divisors of K containing the set S, of archimedean prime divisors,
such that #S >2 . Let

RS = {x€e K: ordp(x) >0 for all primes p of K which are not in S} .

#*
Then RS is a Dedekind domain with an infinite unit group RS .

A theorem of VASERSTEIN asserts that SLZ(RS) is generated by the elementary ma~
I ¢ 1 O\ '
), |

. {
trices 0 1

x 1/ 7 with x € RS « COOKE and WEINBERGER proved the following

theoren.

(5.2) THEOREMs - Let K be a number field, and assume certain generalized Rie-

mann hypotheses, Then any element of SL2(RS) is a product of nine elementary ma-

trices. If S #S_, or if RS is a principal ideal domain, eight elementary matri-

ces suffice. Seven suffice if K can be embedded in the field of real numbers.

P2
g

The proof of this theorem makes use of Artin's conjecture with W = RS , and em-—
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ploys condition (2.2) with F/K abelian. Actually a further generalization of
Artin's conjecture is needed, in which (2.1) is replaced by the condition that the

¥
index of the image of W in Kp divides a given integer k . Our results easily

earry over to this more general situation.

Our final example concerns the existence of a euclidean algorithm on RS y 1o €4,
amap Y : Ry - {0} — {0,1,2, ..} such that for all b, c€ Ry, ¢ #0 ,
there exist q , r€ Ry with b=ge+r, and T =0 or ¥(r) < ¥(b) . If such a

map exists, then RS is a principal ideal domain. The following theorem states
that the converse is true modulo certain Riemann hypotheses, and gives, moreover, a

description of the smallest euclidean algorithm [7].

(5.3 THEOREM . - Suppose that R with #S >2 , is a principal ideal domain,
S Y ——

and that certain generalized Riemann hypotheses are true.

Then a euclidean algorithm on RS is given by the map ¢ defined by

3(x) = Z§¢S ordp(x) n, (x € Ry , X #£0)

with
3 3
- nP = 1 if the natural map RS -—%»Kp is surjective ,
- n =2 else.
p S ——

Moreover, ¢ is the smallest euclidean algorithm on RS .

The function field case of (5.3) is due to QUEEN [6]. In the number field case,
a weaker statement was obtained by WEINBERGER [8 ].

If the map & , defined in (5.3), is a euclidean algorithm on RS then SAMUEL's
results [7] easily imply that it is the smallest one. So it suffices to prove the
first statement of (5.3).

Let b, ce RS , ¢ #0 . We look for an element r =b mod ¢ for which r =0
or &(r) < #(v) « Dividing b and c¢ by their greatest common divisor, we may as-
sume that (b, c) =1 .

The existence of r is trivial if &(c) #2 : If #(c) =0 then ¢ is a unit
and one can take r =0 3 if o&(c) =1 then c¢ is a prime element of RS for
which R; — (RS/(C))* is surjective, and we can take r = unit j; and, finally,
ir o(e) >3 then using a generalization of Dirichlet's theorem on primes in arith-
metic progressions one can take r to be a prime element which is b mod ¢ ,
which indeed gives

8(r) g2 <3 g9(e) .

Hence let #(c) = 2 . In this case, it would be sufficient to find a prime ele=

ment r of RS with &(r) =1 and r=Db mod c .

Let r denote the prime divisor of K corresponding to the prime ideal (r) of
Ry » Then the condition 3(r) =1 means :
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* —H*
the natural map Ry -——;]Kr is surjective,

and the condition r =b mod ¢ can, using class field theory, be translated into
one of the type (2.2), with F a suitably chosen abelian extension of KX . Thus

*
the question is, whether the set M = M(K , RS , P, C) contains an element out-

side S .

This question is analyzed using (4. 3), and it turns out that the answer may be ne-
gative : For example, the rlng Z[; ] coa+a1ns no prime element r which is

1 mod 4 for which ~£Q5] —_— (Z[gs]/(r)) is surjective ; here indeed #(4) =

The same analysis shows, however, that by a fortunate coincidence the set M can,
in our situation, only be finite, modulo Riemann hypotheses, in case we have some-
thing better : namely, if b is congruent to a unit mod ¢ , in which case, of

course, we take for r this unit.

Finally, we mention that our results may be applied to yield existence theorems,

modulo Riemann hypotheses, for perfect, one-error-corrccting ariihmctical.codes

(cfe [3]),
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