@article{SDPP_1975-1976__17_2_A4_0, author = {Shorey, T. N.}, title = {Some applications of linear forms in logarithms}, journal = {S\'eminaire Delange-Pisot-Poitou. Th\'eorie des nombres}, note = {talk:28}, pages = {1--2}, publisher = {Secr\'etariat math\'ematique}, volume = {17}, number = {2}, year = {1975-1976}, mrnumber = {450172}, zbl = {0354.10007}, language = {en}, url = {http://www.numdam.org/item/SDPP_1975-1976__17_2_A4_0/} }
TY - JOUR AU - Shorey, T. N. TI - Some applications of linear forms in logarithms JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres N1 - talk:28 PY - 1975-1976 SP - 1 EP - 2 VL - 17 IS - 2 PB - Secrétariat mathématique UR - http://www.numdam.org/item/SDPP_1975-1976__17_2_A4_0/ LA - en ID - SDPP_1975-1976__17_2_A4_0 ER -
%0 Journal Article %A Shorey, T. N. %T Some applications of linear forms in logarithms %J Séminaire Delange-Pisot-Poitou. Théorie des nombres %Z talk:28 %D 1975-1976 %P 1-2 %V 17 %N 2 %I Secrétariat mathématique %U http://www.numdam.org/item/SDPP_1975-1976__17_2_A4_0/ %G en %F SDPP_1975-1976__17_2_A4_0
Shorey, T. N. Some applications of linear forms in logarithms. Séminaire Delange-Pisot-Poitou. Théorie des nombres, Tome 17 (1975-1976) no. 2, Exposé no. 28, 2 p. http://www.numdam.org/item/SDPP_1975-1976__17_2_A4_0/
[1] The theory of linear forms in logarithms, "Advances in transcendence theory". - London and New York, Academic Press, 1977. | MR | Zbl
. -[2] Effectively computable bounds for the solutions of certain diophantine equations, Acta Arithm., Warszawa (to appear). | Zbl
. -[3] Linear forms in logarithms in the p-adic case, "Advances in transcendence theory". - London and New York, Academic Press, 1977. | MR
. -[4] New applications of diophantine approximations to diophantine equations, Math. Scand. (to appear). | MR | Zbl
and . -[5] Applications of the Gel'fond-Baker method to diophantine equations, "Advances in transcendence theory". - London and New York, Academic Press, 1977. | MR | Zbl
, , and . -[6] On the greatest prime factor of (axm + byn) (to appear). | MR
. -[7] Divisor properties cf arithmetical sequences, Phil. d. Thesis, University of Cambridge, 1976.
. -