@article{SDPP_1974-1975__16_2_A13_0, author = {Moulin, Herv\'e}, title = {Sur l{\textquoteright}\'equation diophantienne $y^2 = x^3 + k$}, journal = {S\'eminaire Delange-Pisot-Poitou. Th\'eorie des nombres}, note = {talk:G14}, pages = {G1--G8}, publisher = {Secr\'etariat math\'ematique}, volume = {16}, number = {2}, year = {1974-1975}, mrnumber = {404131}, zbl = {0319.10018}, language = {fr}, url = {http://www.numdam.org/item/SDPP_1974-1975__16_2_A13_0/} }
TY - JOUR AU - Moulin, Hervé TI - Sur l’équation diophantienne $y^2 = x^3 + k$ JO - Séminaire Delange-Pisot-Poitou. Théorie des nombres N1 - talk:G14 PY - 1974-1975 SP - G1 EP - G8 VL - 16 IS - 2 PB - Secrétariat mathématique UR - http://www.numdam.org/item/SDPP_1974-1975__16_2_A13_0/ LA - fr ID - SDPP_1974-1975__16_2_A13_0 ER -
%0 Journal Article %A Moulin, Hervé %T Sur l’équation diophantienne $y^2 = x^3 + k$ %J Séminaire Delange-Pisot-Poitou. Théorie des nombres %Z talk:G14 %D 1974-1975 %P G1-G8 %V 16 %N 2 %I Secrétariat mathématique %U http://www.numdam.org/item/SDPP_1974-1975__16_2_A13_0/ %G fr %F SDPP_1974-1975__16_2_A13_0
Moulin, Hervé. Sur l’équation diophantienne $y^2 = x^3 + k$. Séminaire Delange-Pisot-Poitou. Théorie des nombres, Tome 16 (1974-1975) no. 2, Exposé no. G14, 8 p. http://www.numdam.org/item/SDPP_1974-1975__16_2_A13_0/
[1] Computers in number theory. Proceedings of the Atlas symposium [2. 1969. Oxford]. - London and New York, Academic Press, 1971. | MR | Zbl
and [Editors]. -[2] Contribution to the theory of diophantine equations, Phil. Trans. Royal Soc. London, Series A, t. 263, 1969, p. 173-208. | Zbl
. -[3] The diophantine equation y2 = ax3 + bx2 + cx + d , J. London math. Soc., t. 43, 1968, p. 1-9. | MR | Zbl
. -[4] Linear forms in the logarithm of algebraic numbers, II., Mathematika, London, t. 14, 1967, p. 220-228. | MR | Zbl
. -[5] Linear forms in the logarithm of algebraic numbers , IV., Mathematika, London, t. 15, 1968, p. 204-216. | MR | Zbl
. -[6] Number theory. Translated from the russian. - New York, Academic Press, 1966 (Pure and applied Mathematics, Academic Press, 20). | MR | Zbl
and . -[7] History of the theory of numbers, Vol. 2. - Washington, Carnegie Institution of Washington, 1920.
. -[8] Notes on the diophantine equation y2 - k = x3 , Arkiv för Mat., t. 3, 1954, p. 67-77. | MR | Zbl
. -[9] Transcendental numbers and diophantine approximations, Bull. Amer, math. Soc., t. 77, 1971, p. 635-677. | MR | Zbl
. -[10] Amélioration effective du théorème de Liouville, Séminaire Delange-Pisot-Poitou : Théorie des nombres, 15e année, 1973/74, n° G4, 5 p. | Numdam | Zbl
. -[11] Note on the integer solutions of the equation Ey2 = Ax3 + Bx2 + Cx + D , Messenger Math., t. 51, 1921, p. 169-171. | JFM
. -[12] Diophantine equations. - London, New York, Academic Press, 1969 (Pure and applied Mathematics, Academic Press, 30). | MR | Zbl
. -[13] Cours d'arithmétique. - Paris, Presses Universitaires de France, 1970 (Collection SUP. "Le Mathématicien", 2). | MR | Zbl
. -[14] Effective estimates of solutions of some diophantine equations, Acta Arithm., Warszawa, t. 24, 1973, p. 251-259. | MR | Zbl
. -[15] Über Annäherungswerte algebraischer Zahlen J. reine und angew. Math., t. 135, 1909, p. 284-305. | JFM
. -[16] Sur les courbes algébriques et les variétés qui s'en déduisent. - Paris, Hermann, 1948 (Act. scient, et Ind., 1041 ; Publ. Inst. Math. Univ. Strasbourg, 7). | MR | Zbl
. -