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ARITHMETIC IMPLICATIONS OF THE DISTRIBUTION

OF INTEGRAL ZEROS OF EXPONENTIAL POLYNOMIALS

by Alfred J. VAN DER POORTEN

Seminaire DELANGE-PISOT-POITOU
(Theorie des nombres)
16e annee, 1974/75, nO 11, 9 p. 20 janvier 1975

I will be discussing certain ideas of MAHLER ( C 7 ~, ~ 8 ~, L 9 ~ ~ dating from the

period 1928-30. Recently LOXTON and VAN DER POORTEN ([4], ~5~, [6]) have presented
these results in a somewhat more generalised setting. There are a number of open

questions mentioned by MAHLER One of these questions can be transformed

into a question concerning the distribution of zeros of exponential polynomials in

several variables, thus partly justifying the title of this lecture. At the time of

nominating this title, I believed I had proved a very general result concerning the

integral zeros of such exponential polynomials ; in the event, I am left with a

conjecture and some remarks which hopefully will prove to be of interest.

1. Arithmetic properties of solutions of a class of functional equations.

1.1. A 1-variable example. 
’

Let T : C --> C be the map given by z r---> zl , where t is a positive inte-

ger > 2 . It is easily seen that the function f(z) = is a transcenden-

tal function (the unit circle is a natural boundary) and that it is a solution of
the functional equation

THEOREM: (MAHLER [7]). - If 0   1 and 03B1 is algebraic, then is

transcendental.

Proof. - Suppose both cy , belong to an algebraic number field K . For

J3 E K f write

where den p is a denominator for p and 03C3 runs through the embeddings of K

in C . If [K : Q] = d and 03B2 ~ 0 , it is well-known that

(2) log 2d log (see, say, WALDSCHMIDT [13], p. 6).

In the following c1 , c~ , .., will denote positive constants independent of
the parameters p , k to be introduced below.

For each positive integer p there are p + 1 polynomials p 0 (z) , ... , p (z)
with degree at most p and with coefficients integers in K (indeed in Z , such
that the auxiliary function



is not identically zero, but all coefficients b with ~ ~ P 2 vanish. To see

this observe that the ( p + 1)2 coefficients of the p.(z) are being asked to sa -
. 2 Jtisfy only p + 1 linear equations and a normalisation. Choosing the p.(z) non-

trivially guarantees that E 03C1(z) does not vanish identically, bec ause f(z) is

not an algebraic function.

We have

Write m = b  ~ 0) . Because 0  |03B1|  1 and l > 1 , it follows

that, for say, k :> c the term b 03B1mlk dominates. in the sense that, say

It follows, on the one hand, that E (T cc) ~ 0 for all k ~ c 2 and on the
other hand, because m > p 

2 p

After repeatedly applying f(Ta) = we have

Fixing p fixes the coefficients of the polynomials p.(z) , and one readily
sees that

We also see that implies E (Tk cy) E K .
P

Finally, for p ~ c and then k > c , we see that the inequalities (5) and (6)
contradict (2) given that E c~~ e K and E c~~ ~ 0 .

1.2. 1-variable generalisations.

The same argument as just employed can deal with the following more general si-
tuation. Let f be a function which in some neighbourhood of the origin has a
Taylor expansion

the A all in some fixed algebraic number field.
W

Suppose further that f satisfies a functional equation of the shape

where the a.(z), bj(z) are polynomials with algebraic coefficients.

One can now show that 03B1 ~ 0 and cannot both be algebraic subject to
certain conditions on T : z ~ ~.--> z~ and These conditions are that, firstly,
~ > s ; this is required to establish the inequality (6). Secondly, of course, the
series (7) must converge for z = o’ , and then automatically for z = Tk c~ ,
k = 1 f 2 ~ , :. ; this leads to the requirement that Tk y .~.> 0 as k --> ~ .



Thirdly one wishes that (8) defines f(T a) , k = 1 , 2 , ... given f((y) ; if

denotes the resultant of the two forms I a.(z) u~ I b .(z) u~ 
then the condition turns out to be A(T / 

k cy) B 7~ 0 for J k = 0 , 1 , 2 , J ...

I do not know of interesting examples with s > 1 . Some examples to which the

theorem applies include

1.3. Generalisation to functions of several variables.

Henceforth let n be a fixed integer and let z denote the n-tuple

> ..

If  = (vi , ... , »n) denotes a n-tuple, We denote bY z" the monomial

z  = z 11 z 22 ° ° z nn . A point is algebraic if "l ’ ° ° ° ’ are 

braic..

Let T = denote a n x n integer matrix. lle define a transformation

@~)~ --> also denoted by T , by the rule Tz = w where

One easily sees that (Tz)  = zfT where T is the usual product of the row-

vector  and the matrix T . It follows that T z = T T z) , k = 1 , 2 , ...

Now denote by £ the spectral radius of the matrix T, that is, the maximum of

the absolute value of the eigenvalues of T . With the appropriate n-variable

reinterpretations of the notation we can apply the proof of section 1.1 to apply to

functions f of z = (z , ... , z ) , where f satisfies (7) and (8). A trivial
change is required, in particular in (5), p is replaced by p ~ .

Of course certain conditions must be satisf ied by the matrix T and the point
In order to establish the analogue of (4), we will require that

where the constant c depends only on T , ~ , ~ denotes the inner product of

n-tuples, the n-tuple u depends only on T and a , and u , .., , n > 0 .

Secondly we need to know that

Surprisingly it is this condition which presents the greatest difficulties and

which motivates section 2.

Furthemore, but these conditions apply also.in the 1-variable case, we need

a 1 a 2 ... a n 7~ 0 and Tk cy ---> 0 as k --> ~ , so that given (?)~ f(a) automa-

tically is def ined when T is non-singular provided also that

Finally we observe that ~re obtain the inequality (6) provided that g > s .



Since certainly s ~ 1 we cannot allow all the eigenvalues of T to be roots of

unity.

We shall not go into detail concerning the condition on T that implies (9) but
refer the reader to GANTMACHER ([2], pages 65-94, or to [5]).

Ve conclude with some examples : Let (a~) be the sequence of Fibonacci numbers

(0,1,1, ...) satisfying a~ = a~ + a~ , h = 1 , 2 , ... The function

= = 
= f(~,~) - ~ ,

= (~ ~) . It follows that if o~ o~ 0 , are algebraic, and
is defined, then ~) is transcendental. In particular,

is transcendental for a algebraic, 0   l . A sufficient condition in order
that l) , f(o~ , l) , ... , i) be linearly independent over the
field A, of all algebraic numbers is that the numbers |03B11 t ..... |03B1m| be mul-

tiplicatively independent, as we shall see later.

Let f(z) = 03A3~h=0 zlh and let 03B21 , ... , 03B2n be algebraic numbers, not all of
which are zero. Then the function

satisfies F(z~...,z~)=F(~,...,~)-(~ z~+...+p~ 
We shall show later that it is sufficient that the non-zero algebraic numbers

03B11 , ... , 03B1n be multiplicatively independent in order that, if also  1 ,
h = 1 , ... , n , the number F(03B11 , ... , 03B1n) be transcendental. Thus with the
given conditions on 03B11 , ... , 03B1n the numbers f(03B11) , ... , are linearly
independent over the field A .

On the other hand, the theorem cannot deal with the following examples : Although
= ~=0 ~ ~’~ satisfies f(zq , q) = ~ f(z , q) - z-1 ,

we have T = (~ ? , and both eigenvalues are l , so j~ l . For a different
reason, we cannot deal with : let j(w) be Weber’s modular function of level l
Then if

there is a polynomial P such that P(z , ?(s) , = 0, k an integer ~ 2.
However we require that be a rational function of z and F(z) .

We conclude by remarking that all of the ideas of section 1 are due to MAHLER
(~7], [8], [9L Ell]). For the details which are omitted above, the reader is
referred to these original papers, or ’to j~5].



2. Integral zeros of exponential polynomials.

2~1. The vanishing of power series in certain sequences of points.

Let E(z) = 03A3  b z  be a power series with coefficients b all of which lie

in some fixed algebraic number field. Further let of ~ (Cx)n be an algebraic point,

and T a n x n integer matrix such that the condition

(9) log t(T~)~! ~- c~(u , ~) , k ~ ~
is satisfied ; here ul ’ ..., u n are all positive , and we remark that u is

actually the projection of (- log ... , - log |03B1n j) onto the eigenspace of

T spanned by eigenvectors whose eigenvalue has absolute value £ . If the power

series E(z) converges in a neighbourhood of the origin, then E(T of) exists for

k ~. c . We suppose E(z) is not identically zero. We can write

The notation is so chosen that none of the E ~2~ in vanishes identically.R
Since u > 0 , each E (z) is a polynomial, and the index R in runs throughR
a discrete series 0  R 

0 
 R 

1 
 R 

2 
 ...

If E(T (y) = 0 ~ k > c 9 it f ollows that one has for some e > 0

One sees however without undue difficulty, that as a consequence of a theorem of

A. BAKER [1], we must have

Hence, in order to study conditions on cy such that E(T (y) = 0 , k ~> c it

is sufficient to consider polynomials F(z) such that (y)=0~ k~c...
2.2. The vanishing of polynomials in certain sequences of points.’

Let M be a finite set of n-tuples of non-negative integers, and denote by

a polynomial in C~z ~ ... y z *] . Suppose F(z) does not vanish identically but

F(T a~ - 0 , k = 0 , 1 , 2 , ...

If the minimal polynomial of T has degree m write

For each p E M define m-tuples y 
> 

by



where ~ is the (log 
... , 

log a ) . ~ Then the vanishing of the
polynomial F(z) in the sequence z = T 0153 J k ~ 0 , 1 , 2 , " , implies that
the exponential polynomial

in the m-variables § = (§ , ... ,’ § ) ’ vanishes at the points 03B6 = X ,
k = 0 , 1 , 2 , ... as defined by (12), More explicitly if

then vanishes on the sequence ~ = B 3 , k = 0 , 1 , 2 , ... where

~==(l ~ 0 ~ ... ~ 0) and 3 is the mxm matrix

We digress to remark the following : given the condition (9) on T and cy one

can conclude without difficulty, though non-trivially, since the argument requires
- 

a transcendence result of BAKER (see, for example, [13]) that if |03B11| ,..., |03B1n I
are multiplicatively independent (that is, log |03B11| , ... , log i are linearly
independent over ~ ~ then ~~ _ Q , k == 0 , 1 , 2 , ... implies 0 .

By a more elementary argument one similary sees.that F(z) = 0 is implied if the
characteristic polynomial of T is irreducible over £ . So in both these cir-
cumstances one has the condition (10). The second assertion is already proved by
MAHLER [7]. For details, see [5]. Neither of these two cases require the argument
of sections 2.1 and 2.2.

2.3. The vanishing of exponential polynomials at integer points.

We shall suppose that in the foregoing construction, no eigenvalue of T is a

root of unity, and that the eigenvalues of J have distinct absolute value (if
necessary we replace T by a power and then proceed as in 2.2 ; there is no loss
of generality in our assumption, in that the condition (9) essentially places this
condition on T ) ; we also suppose that T is invertible.

In an attempt to apply SKOLEM’s method and references below), we select
a rational prime p with respect to which det T is a unit, and then a positive
integer d such that where ;~ is sufficiently large so as to
render the following valid. It is clear (but for details see, for example, LECH[3])
that there is a prime ideal p containing p so that the p-adic completion K

contains an isomorphic copy of the field generated over £ by the finitely many
numbers b and the components of the y . The following then takes place in K

and the valuation is the p-adic valuation so normalised that p = p~~ , 



which is well-defined because 1 f ~ ~ p" . Then we can expand

as a p-adic power series convergent for all z E Z the p-adic integers. But the

power series vanishes at the infinitely many points z = 0 , 1 , 2 , ... in the

compact set Z and so vanishes identically on Z . Hence the coefficient of each

power of z vanishes and we obtain infinitely many p-adic equations. Unfortuna-
tely these equations increase in complexity and do not seem to provide much useful
insight. In the special case however, where ~ is a 1 x Z matrix (so m = 1 ~,
that is T these equations do "unravel" and one does obtain that for some+

w ~ ~~

So necessarily the numbers ... , a n are multiplicatively dependent ; this
is a much stronger result than the previously remarked upon condition that

... , are necessarily multiplicatively dependent. The reader will
notice that the result for the case T = is actually a special case of a theo-
rem of LECH [3] and MAHLER [10] concerning integer zeros of exponential polynomials
in one variable. Actually, by a quite different method, the special case was al-
ready proved by HAULER [8] and generalised to triangular matrices T by LOXTON and
the author ~5 ~ ; this last generalisation does not appear to be obtainable by the
p-adic method outlined above.

Nevertheless, in view of these results, it seems reasonable to conjecture that if
the exponential polynomial (13)

vanishes at all the points = ~ k = 0 , l , 2 , ... then necessarily for
some one has y =y , , which is to say (p , =(p , p.’ T~) ,
~ =0 , l , ... , m2014 l , and finally

so a strong form of multiplicative dependence of the number cy 1 ~ .... a~ 
n 

*

Incidentally, if the characteristic polynomial of 3 (so, the minimal polynomial
of T ) is irreducible over Q and 3 has an eigenvalue l greater in absolute
value than its other eigenvalues (as is implied by the condition (9)) then

3)=o, k = 0, 1 , 2 , implies that for some  ~ )j.’



where the components of v are algebraic numbers linearly independent over £ .

Since y ~ y ~ have components which are logarithms of algebraic numbers (given
~ ~ . 

.

(y an algebraic point) one can conclude by a transcendence result of BAKER that

)exp(p , (  - ’)Tl~| ( = 1 for l = 0 , 1 , ... y m - l and finally that

It is this argument which justifies the assertion in 1.3 that if |03B11| ,..., )y !
are multiplicatively independent, and is the sequence of Fibonacci numbers,

then the numbers

are linearly independent over the field A .

2.4. A conjecture.

The theorem of Lech-Mahler which is referred to above shows that the integer

zeros of an exponential polynomial in one variable consist of a finite number of

arithmetic progressions (where an isolated point is deemed to be an arithmetic pro-
gression with common difference 0 ). One might ask whether there should be an
analogous result for exponential polynomials in several variables.

It seems likely to me that the following should be the case : If 

are elements of Cn such that v - v2 - ... , v are linearly

independent over C then define a (m-dimensional) Z-manifold to be a set of the

shape {nO Vo + ... + nm vm : nO ’ ... n + ... + nm = then conjec-
ture that :

The zeros in Zn of an exponential polynomial in n variables are the disjoint
union of finitely many manifolds in Cn .

The only supporting evidence is that this is the case for n = 1 and that the

general case can be reduced to finitely many cases not much more general than the

situation briefly discussed in 2.3.
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