
Séminaire Choquet.
Initiation à l’analyse

JEAN BOURGAIN
A stabilization property and its applications in the theory of sections
Séminaire Choquet. Initiation à l’analyse, tome 17, no 1 (1977-1978), exp. no 5, p. 1-23
<http://www.numdam.org/item?id=SC_1977__17_1_A3_0>

© Séminaire Choquet. Initiation à l’analyse
(Secrétariat mathématique, Paris), 1977-1978, tous droits réservés.

L’accès aux archives de la collection « Séminaire Choquet. Initiation à l’analyse » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute
utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.
Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SC_1977__17_1_A3_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


5-01

A STABILIZATION PROPERTY AND ITS APPLICATIONS

IN THE THEORY OF SECTIONS

par Jean BOURGAIN

Seminaire CROQUET
(Initiation a l’Analyse)
17e 1977/78, n° 5, 23 p. 8 decembre 1977

Abstract. - We introduce a stabilization property in descriptive set theory which
generalizes the topological and measure theoretical situations. An associated
theory of sections, for mesurable sets in products, is developped.

1. Preliminaries.

The aim of tills section is to make the text more self contained. We will introduce

the various classical notions and properties, which are the starting point of this

work. They can also be found 

Definition 1.1. - Let E be a set. A paving on E will be a class 6 of sub-

sets of E containing the empty set. We will call (E , S) a paved set.

Definition 1.2. - If (E , ~~ is a paved set, ~~~e denote by c~ the class of

subsets A of E , such that EBA belongs to 6 .

~‘ (resp. ~~ , ~~ ~ b ~ is the stabilization of % for finite intersection

(resp, finite union, finite intersection and finite union, countable intersection
and countable union) .

C~ ~~ is the a-algobra generated by % .

Definition 1.3. - Let (E. , Ei)i~I be a family of paved sets. The set 5 of

subsets of E = E. of the form A. , i where Ai E g. for each i E I , is

called the product paving i &#x26;..

PROPOSITION 1.4. - Let (E. , Ei)i~I be paved sets such that E. E Ei , for each

i E I . Then, 6 Ei) contains the product 03C3-algebra ~i (i) . If moreover
I is countable, then (03A0i Ei) = ~i 15( &#x26;. ) .

In fact, only finite and countable products will be involved here.

Let (E , ~~ be a paved set, and let (K. i ), a.E I be a family of elements of 5 . We

will say that has the finite intersection property 
whenever J is a finite subset of I .

Defini tion 1.5. - A paving 6 on a set E is said to be compact (resp, semi-
compact) if. every family (resp, every countable family) of elements posses-

sing the finite intersection property, has nonempty intersection.

By a simple ultra-filter argument we obtain the following proposition.

PROPOSITION 1.6. - If E is a compact (resp, semi-compact) paving on E, then

also is compact (resp. semi-compact).



The following proposition is immediate. 

PROPOSITION 1.?. - Let (E. , ~. ~ , be a family of paved sets. If each ~ is

compact (resp. semi-compact), then on E, is compact ( resp, semi-

compact) .

We nOB1 pass to a proposition which .will be often used later (especially in pro-
duct situations ) .

~ 

PROPOSITION 1..8. - Let, (E , ~~ be a paved set, and f an application of E

into a set P , ude assume that, for each x E F , the paying, consisting of the

sets f-1({x}) n A , A ~ E , is semi-compact. If (A ) is a decreasing sequen-. - 

.. 
- 

- nn

ce then 
’

Proof. -It is clear that if f(A) , then the family f"~((x)) has

the finite intersection property. By hypothesis, the set f" ((x)) n f1 
n 
A 
n

contains some point y ~ E . Hence x = f(y) e f(Ft A ) y completing the proof.

N will denote the set of all positive integers 1 , 2 y ...
Let R = U~k=1 Nk , consisting of the finite complexes of integers. Take

{~} . If c ~ R* , let )c) be the length of c . If c , de R* , we wri-

te cd , if c is an initial section of d . Let K=]~-. If and

c ~ we write c  v y if c is an ihitial section of B; .

Definition 1.9. - Let (E , 6) be a paved set. A Souslin scheme (A ) on g

will be a mapping of R into 6 . The scheme (A ) ceR is said to be regular, if

A =3 A whenever c  d . The result of the scheme (Ac)c~R is the set

U03BD ~c03BD Ac = U03BD ~k=1 A03BD|k , where 03BD runs over N .

Let (E y 6) be a paved set, and (A ) a scheme on 6 . For each complex
c e Nk , we introduce the following sets

[c] " ~1~1~ ~~~k ~f"~
A(c) = r~ A~~ ~ where ~ runs over ~ = (B; e~~ c  B~)

~~=~,...,~,~. -.-.~
Obviously, the following properties hold.

PROPOSITION 1.10. - If c e R , then



t~) c e (R) is a paving which we denote by K .

The reader will easily verify.

PROPOSITION 1.11. - ~ is a compact paving 

The following result is basic in the theory of analytic sets.

PROPOSITION 1.12. -Let (E , 6) be a paved set, and a regular scheme

on E , with result  . If 03BD e N, then fL Ar  -nC:A .
Proof. - Suppose x ~ ~k A[03BD|k] . For each k ~ N , we introduce the set

which is clearly a nonempty member of n. By the regularity of the scheme, the se-

quence (K~)~ is decreasing.

Since, by 1.6, also ~v is compact, we obtain some ~ E ft ~ . It follows that
x ~ f~1 completing the proof.

Definition 1.13. - Let (E , ~) be a paved set. A subset A of E is said to

be &#x26;-analytic if it is the result of a Souslin scheme on § . Let c~(~) denote

the class of all &#x26;-analytic subsets of E. The members of ca() (resp. 
are called ~--coanalytic (resp. &#x26;-bianalytic).
The main property of ~,( ~) is the following.

PROPOSITION 1.14. - = a~ ~) ,

In fact,the proof of this property consiste in the reduction of a scheme of
schemes to a single scheme. Although the idea is quite simple, its working-out is
rather complicated. For the details, we refer the reader to [14], for instance.

The class of the analytic sets is stable under projection in the following sense.

PROPOSITION 1.15. - Let (E, ~) and (F , 5) be paved sets, such that the pa-
ving F is semi-compact. If x F belongs to x F) , then is a

member of E x F .r..~ E is the projection.

Proof’ - Let A be the result of the scheme (E x on E  F , where

Ec ~ 6 and F ~ F , for each We define a scheme (Bc)c~R on E by
taking Bc = E if ~|c|k=1 Fc|k ~ ~ , and Bc = ~ , otherwise. Since, for each

we obtain that

the result of the scheme (Bc)c~R is precisely -rr(A) .
To each subset R of R* , we associate a transfinite system (R ) , which

we define inductively as R = R ~ and 
Q’’ C~(JD~ -’-

~ ~ ~ ~ there R d) .



If y is a limit ordinal, take R =0. R .
It is easily verified that the sequence (R03B1)03B103C9 is decreasing. Because R is at

.. most countable, the sequence stabilizes. 
Q’ ~

Let i(R) = inf{03B1  03C91 ; R 
03B1 
= R 03B1+1} , which is called the ordinal of R.

We are now able to introduce the Lusin-Sierpinski index, which is of fundamental

importance in the study of Souslin schemes.

Definition 1.16. - Let (E , 6) be a paved set, and a regular scheme on

5 . Suppose x e E , and consider R(x) = (~) u (c e K ; x e A ) .
Let ~ = i(R(x)) . If R(x)~ = ~ , let i(x) = IT) . If i(x) = a) .
The ordinal i(x) is called the Lusin-Sierpinski index of the scheme in

the point x.

Remark that a predecessor of a member of R(x) 
ex 

is also in P(x) , ,and, in par-

ticular, R(x)03B1 ~ ~ if, and only if, ~ E R(x) .

PROPOSITION 1.17. - If A is the result of the regular scheme (A ) , then

i(x) = u) if, and only - if, x ~ A . 
c 0EB1B -

Proof.

1~ If x e A , then x e for some ~ e K . It is easily verified, using

induction, that, for each c~  ~ , the set R(x) contains every initial section

2° If ~ = i(R(x)) , then R(x)~ = R(x) , and therefore every element of
R(x)~ has a strict successor in R(x)~ . Assume R(x)~ 7~ ~ . Then, we find some

v 6 K so that e R(x) , for each k e JN . Hence also e R(x) , for each

k ~ N , implying x ~ f~ 
PROPOSITION 1.18. - If i(x)  (ju , then i(x) is never a limit ordinal.

Proof. - If ~ = i(x) would be a limit ordinal, we would obtain that
= n R(x)03B1 . For each of  ~ , we have that R(x)03B1 ~ R(x) 03B1+1 , and hence

e R(x)~ , which contradiction. 

" 

and hence

Definition 1.19. - Let (E , S) be a paved set, and (A ) ~ a regular scheme
If x e E , then we define, for each c e R~ , a subset R(c , x) 

and an ordinal i(c , x) by taking

Of course, i~~ , x~ = i~x~ . If c ~ ~ , then i(c , x~ is the Lusin-Sierpinski
index of the scheme (Ac,d )d~R if x E A . In virtue of 1.17 and 1.18, we obtainc, d dE(R c



that i(c y if, and only if, x and otherwise x)
is never a limit ordinal.

PROPOSITION 1.20. - ~ ~cu , and c , then de R(c , x) if, and

only if. (c , d)e P(x)~.
Proof. - If c = ~ y there is nothing to prove. If c 7~ ~ ~ we proceed again by

induction on a  a)..

PROPOSITION 1.21. - ~ c ~ then

Proof. - If i(c y x) = ~ y then R(c ~ x) contains every initial section of

some sequence B~~ K . Therefore R( (c , y B; ) , x) contains every section of the

sequence ~ defined = ~L... It follows that i((c ~ ) ~ x) = cu .
Assume now i(c ~ x)  Then also i((c ~ n) ~ x)  ~ ~ for each n ~ N ,

1° If n ~ N , and a  i((c , n) , x) , then R((c , n) , x)03B1 ~ Ø , and thus

contains Ø . It follows R(c , x) , and thus Ø e R(c , . 

re i(c ~ x) > a + 1 . Since i((c , n) y x) is not a limit ordinal, it follows
that i(c y x) > i((c , n) y x) . Because i(c , x) is not a limit ordinal,
i(c , x) > n) , x) .

2° If a = supn i((c , n) , x) , then R((c , n) , x)03B1 = Ø , whenever n e N .

Suppose d e R(c , x)03B1 and d ~ Ø . Then d == (n , d’) , for some n = N , and

d’ e R* . We obtain that d’ e R((c , n) , x) , a contradiction.
Hence R(c , x)~ ~ (~) , and R(c , x)~~ = ~ , implying i(c , x) ~ a + 1 . This
completes the proof.

Proceeding by induction~ we deduce easily from 1.21 the following.

PROPOSITION 1.22. -~ regular scheme on 6 , then

is a member of ~~ , whenever c E ~* and a  (ju .

2. A stabilization ro~ ert .

The topic of this section is to define a stabilization property, which we will
call (S) . It mil provide us a generalization of various situations, especially
the topological and measure-theoretical case.

Definition 2.1. -Let E be a set, pavings on E . We agree to say
that (E , ~ , ~~ is basic, if :

1° ~ is stable under finite intersection.

2° If and B ~ A , then also B E ~t .

Definition 2.2. - Let be basic. We say that (E , E , R) has pro-



perty (s) if, moreover; - the following is true.

Let (A ) be a regular scheme on E with index i . Then, either the result of

the scheme is nonempty or (x E E ; > a) for some a (and hence
for the succeeding countable ordinals).
It is clear that (S) is preserved if S decrease§ and R increases. The follow-

ing proposition will provide us a more explicit formulation of property (S) .

PROPOSITION 2.3. - Let (E, &#x26; !R) be basic. Then, the following properties are

equivalent.

(I) Let, for each c ~ R* , 7 a transfinite system of sets in E* be

given, verifying : 

Then, either has a nonempty result, or A~ for some a  ~ .
(II) (E, 6 , 3t) has property (s) .

(III) The same as (I), but where E* is replaced by 2 .
Proof.

(I) =====~ (II) : Assume regular scheme on 6 ~ and define
A = E ; x) > 03B1} , which belongs to E* . Applying 1.21, we see that
the conditions of (I) are satisfied. Therefore, either has nonempty re-

suit, or A~= {x ~ E ; i(x) >oJ ~!R, for some a~ .
(II) ~ (III) : Let, for each c e R* , a transfinite system (A ) of sub-

sets of E be given, satisfying 1° , 2° , 3° * We consider the scheme 

on S . The reader will easily verify by induction on 03B1  03C91 that

If has an empty result, then (x = E ; i(x) > ~ ~ and hence A~ belong
to 9ty for some 

(III) =====~(l) : This is obvious.

It is clear that if (E, 6, M) has (S) , then also (E , S, !R) has (S) ,
where 9L= ~) .
Some examples are in order. The first example requires the notion of a capacity.

Definition 2.4. - Let (E ~ 6) be a paved set such that 5 is stable under

finite union and finite intersection. An 6-capacity on E will be a real valued

function I defined on 2 ~ verifying the following conditions :
1~ I is increasing



2° If (A ) is an increasing sequence of subsets of E , then
nn

3° If (~~ ~ is a decreasing sequence in % , then
nn

Example 1. - Let (E ~ S) be a paved set such that S is stable under finite

union and finite intersection. Let I be an E-capacity with I(Ø) = 0 . If we ta-
l(A)=0) , then (E , g, ,) has property (S) .

Proof. - Let, for each c e R~ . a transfinite system (A~) . of subsets of E
----201420142014 c Q~~

be given, such that 1°, 2~ ~ 30 of proposition 2.3 are satisfied.

If c ~ R with )c) l = k and Of  let

Assume A03B1Ø ~ R , for each a  03C91 . Then, there is some e > 0 with > e ,

for each a  ~ .By induction on k y we construct a sequence (n~)~. of integers

satisfying -.) > ~ , for each 03B103C91 , and k ~ N .

For we have that I(A03B1+1Ø) > ~ , and 

Therefore, there must be some n. e N so that -i) > ~ , for each a  03C91 .
Suppose n. ~ ... ~ n, obtained verifying 

... , -i) ~ ~ ~ for each Of  ~.
For each aa) ~ we have that 

~~1~"’~~~

Therefore, there must be again some so that

So the construction is complete.

Since, in particular, (Ar Ln~ ... ~~k" i) is a decreasing sequence in g and

l(Ar 
n1, ° ° ° ’ i) >e , for each k we find that Ft. A0[

n1’ ° ° ° ] ~ Ø . But, by
1.12, this set is contained in the result of the scheme is there-

CC~:(K
fore also nonempty.

Example 2. - Let (E, &#x26;) be a paved set such that 6 is semi-compact and sta-
ble under finite union and finite intersection. If R = then (E , 6 , !R)
has property (s) .

Proof. - We define I on 2~ by taking l(~) =0 , and I(A) = 1 if A~~ .
Clearly I is an %-capacity. We obtain a special case of example 1.

The following example is of different nature.

Example 3. - Let (E, §) be a paved set such that § is stable under countable

union and countable intersection. Let R be a class of subsets of E, such that :

1° R is a 03C3-ideal



2° If (A ) a:wl 
is decreasing in 6 . , then there is some T)  u), so that

AB&#x26; ~ R , whenever 03B1 > ~ .

Then (E, 6 ~ !R) has property (s) .

Proof. - Let, for each c e R* , a transfinite system (A03B1c)03B103C9 
1 

of subsets in

E* = g be given, such that 1° , 2° , 3° of proposition 2.3 are satisfied. There

exists ~  03C91 so that A e ? , for each c e R* , and a > T) . Remark that

U e 3t . If M . Then there is x in A~Ø not belonging to

U induction on k , we construct a sequence of integers

satisfying x ~ A ’ I , for each
~l~’~~~~k 

"

Since x ~ and x ~ AltB&#x26;~~ , we obtain that x ~ A~ c: U Thus, there is

n, e N with x e A~ . 
ø~ ~ n n

1 - 

n
Suppose n. , ... , n. obtained such that x ~ A’Tl . Since

i K ~l~’"~~k

we obtain x ~ A~+1 n.....n ~ Un A’ . Thus, there is n, , 
=N with

~ ~+1 ~

x e An y completing the construction.
"l~-~~+l ~

In particular, x ~ A 
n1 ,...,nk 

, for each k e N . Hence, x belongs to the result

of the scheme (A) .~.CC~E(K

The following example reduces as well to example 1 as to example 3*

Example 4. - Let (E , E , ) be a probability space, and take

Then M) has property (S ~ ,
Also the following example, which is an application of example 3, is worth to be

mentioned.

Example 5. - Let E be a separable metric space, % the Baire a-algebra, and

!R the class of first category sets. Then (E , ~ , ~t~ has property (S~ ,

PROPOSITION 2.5. - Assume ( E , ~ , ~t~ with property (S) , and let ( k , ~ ~ be
a paved set such that ~; is semi-aompact and stable under finite intersection. Let

Tf : E x K ....~ E be the projection, and consider

Then, (E x K , % x X , has property (S) .

Proof. - First, remark that (E x K , % x X , is basic. For each c G R*,
let be a transfinite system of subsets of E x K satisfying 1° , 2° , 30

1
of 2.3. Then, the subsets of E also satisfy 1° , 2° , 3° of 2.3, with

respect to the paving % , Suppose there is v e x so that n # § .



Since D~ Tr(A ) = A ) ~ by 18, we see that also (A )~ has a nonempty

result. Otherwise A~ e Tr*~-(!R) y for some a  (D..
The next result requires the following lemma~ which is more technical than basi-

cally difficult.

PROPOSITION 2.6. - Assume (E ~ @ ~ ?) with property (S) . Let, for each k ~ N~

... , ck) ~ (R*)k , a set W 
i ’ 

° ° ° ’ 

and a transfinite system

(V03B1c 
1 ’ 

... ) of subsets of E be given, so that following properties are sa-

tisfied :

Then one of the following 2 alternatives must occur

lo for some 03B1  03C91 ;
2° There is a sequence K such that ~k W 03BD1|k,...,03BDk|k 

~ Ø .

Proof. - The Cantor enumeration of N x N induces a map

where the number of complexes is, of course, only dependent on c . This
map is extended by taking ~ = 1 and d) = 0 .
For each c ~ (R~ y we define

We show that the conditions 1°, 2°, 3° of 2.3 are verified.

1° To see that the scheme on &#x26; is regular, take ct , c" ~ R with

c 1  c" . Then

We only have to apply properties 1° and 2°.

2° This follows immediately from properties 3° and 40,

3° Assume c E ~~‘ , and r .We distinguish 2 cases.

Case 1 : k = k . - There is some k = 1 ... ~ k so that d~ = d’~ if
------- r r+ ’ ’ r c, n c



£ # k , and # = (# , n) , whenever n e N , We find
c,n c --

Case 2 : k , =k + 1 . -Then d~ 
201420142014 r+1 r c,n c r c,n

whenever n e N . We obtain

Since (E , E , R) possesses (s) , cither e for some 03B1  03C91 , or there

is n A003BD|r ~ Ø . Remark that A03B1Ø = V03B1Ø . If then there is a

sequence (03BDk)k in 3T, such that d t  03BDk , whenever r e N and k $ k . If

k e N is fixed, then there exists r e N with k  kr , and  , for
each l = 1 , ... , k. Then

This completes the proof.

THEOREM 2.7. - Assume (E , g, !R) with property (s) , and (K , K) a paved
set such that K is semi-compact and stable under finite intersection. We consider

the projections n- : Ex K~~ 2014~ E x K~ , and p : E x K~ 2014~ E . For each
k e N , let (X03B1k)03B103C91 be a transfinite system of subsets of so that

following properties are satisfied:

1° X- is (g x Kk)-analytic in E x Kk ;

3° X03B1+1k ~ 03C0k(X03B1k+1) .
Assume p.(x~) ~ !R ~ for each a 0) . Then there exist x eE and (y.L 
such that (x~ ... ~ y) =X~ , for each keN.
Proof. - Let X. be the result of a regular scheme on 5 x K . For

each k ~ N and ... , c,) ~ (R*)k , define

The reader will easily make out that 1° ~ 60 of proposition 2.6 are verified.
Hence there are 2 possibilities:

lo There is (x such that V? = e ~ .

2° There is a sequence in n such that Ft W 1 . 
contains some

point x = E . Therefore ~ )k~.~~ jk



By the semi-compactness of the paving K2014 on K2014 == we get

and thus contains a point of FL For each integer £ , we have

(x , y1 , ... , y.) ~ n completing the proof.

We pass to the following first corollary.

PROPOSITION 2.8. - If has property (S) , then also (E, A(E) , !R)
has property (s) .

Proof. - Let, for each c e R~ . a transfinite system (A~) _ of subsets of E

be given, satisfying 

1~ is a regular scheme on CL(§) ;

2° A~ ~ A~ if a  P :c c ’

30 Aai-l c: U ~ c n c,n
Take K let K = u ((n) ; n ~ N} , which is a compact paving on

K , stable under finite intersection. For each k e N and c~  we define

xe A~) ~ which clearly satisfy the conditions 1°, 2°, 3°

of 2.7. Therefore we have one of the following 2 possibilities :

A 

1~ There m is a so that e !R . But U A~ = p.(X~) , implying
A~~e ~ 

°

2° There is x e E and v e ~ such that (x, e X~ , for each k e N .

Then x ~ f~ and thus in the result of the scheme (A ) ~o . So the proof is
given.

THEOREM 2.9. - Assume (E , E , N) with property (S) , and let (A ) be a se-

quence in d(6) such that n A = ~ . Then there is a sequence (B ) in &#x26;* so’ ’ 

n n 20142014""20142014’ r 201420142014-"201420142014 n n 20142014 2014

that An ~ Bn , for each n , and n B 

Proof* - Each set A is the result of a regular scheme on &#x26; with index i .~ 

n n

Let K = N and K = which is a compact paving on K , stable under finite in-

tersection. For each k ~ c~  ~ ~ we define

which again satisfy the condi tions 1~, 2°, 3° of 2.7 ~cf, 1.21). Thus there are 2
alternatives : 

’

1.° There so that E ~ . If we let eE ; 

then B belongs to E* , and A C B . Moreover



thus a member of !R .

2° There is . x e E , and a sequence (B; ). in N so that (x, 03BD1 , ... , B; ) 
for each k ~ N . Let n e N be fixed. We find that in((03BD1n, -" p 03BDkn), x) > 0 ,
for every k ~ N , implying x e A . Hence x 6 D A , which is a contradiction.

In particular we obtain the Novikov separation result (see [24]).

PROPOSITION 2.10. - Let (E , 6) be a paved, set where 6=6" is semi-compact.
If (A ) is a sequence in GL(s) such that D A == ~ , y then there is a sequence

(B ) in E* so that An ~ B , for each n . and Ft B = Ø .
n n 2014 20142014201420142014 n n ’ 201420142014201420142014 ~ 201420142014 n n 

’

3. Applications in section theory.

A. Classes of sets.

The starting point will be a paved set (X ~ X) such that :

1~ X ~ X ;

2~ 2 is stable under finite union and finite intersection ;

3° X is bianalytic (i. e. X ).
Let further R be a class of subsets of X satisfying

4° R is a 03C3-ideal ;

5" If A e 9t , then there is B ~ !R n X~ so that A c B ;

60 (X ~ X ~ M) has property (s) .

Definition 3.1. - If S is a class of subsets of X y we let S’ consist of the

A c X such that there is B ~ S with A A B ~ R . It is clear that (F’)’ == F’ .

PROPOSITION 3.2. -JEjC Ae 3~ , then there exist B , C e b3L(x) satisfying
B c A ~ A ~ C ~ and ABB e !R , CBA e !R .

Proof. - Take so A ~ St ~ and X~ 
A A D . It is easily seen that B = A.BD and C = A u D satisfy.

PROPOSITION 3.3. - (X , X~ , !R) has property (s) .

Proofs - It is clear that (X , X’ ~ !R) is basic. It follows from 3.2 that if

regular scheme on X~ then there is a regular scheme on

b3L(x) such that A 
C 

and A 
C 

e for each c ~ ? , Hence D = U (A Bp )
is still a member of X . Let i and j be the indices of the schemes (Ac)c~R
and (Bc)c~R , respectively. By induction and using 1.21, we see that

(x ~ X ; i(c y x) > 03B1 , j(c , x)  03B1} is contained in D , for each c ~ R* and

a  03C91 . Since, by 2.8, also (x , bOL(x) , R) has property (s) , there are 2

possibilities :

1~ The scheme (B~~ ~ and hence certainly (A ) ~ , have a nonempty result.



2° There is a ~ w 1 so that > a’~ ~ ~ . Since

So the proof is complete.

PROPOSITION 3.4. - ( x t ~ " = ~ ~~‘~ ’ .

Proof.

1~ Since (X~)’ , and (X~)’ 1 is stable under countable union and countable

intersection, (X~)’ .

2~ Define ~ = (A e X~ ; (x’)~) , which of course contains X ~ Moreover

~ is stable under countable union and countable intersection. We give the details

for the intersection, the argument for the union being similar.

Let thus (A) n n be a sequence in , A = n 
n 
A 
n 

and B some set in (A)~ . If,
for each n , we take B n = (BBA) , then B 

n 
is in (A p , and hence

in Thus also B = f~ B~ is in (X~)~ . So we proved that Ae Y . There-

fore r’ ~ K , implying that (X~)’ ~ (X’)~ .
The following is left as an exercice for the reader.

PROPOSITION 3.5. - a(x’) = ’

PROPOSITION 3.6. - ba(X)’ I = bOL(r) = (X~)’ .
Proof. - It follows from 3.5 that b(a(x)’) = bOL(~) . If A ~ bd(X’) ,

then A e d(X’) , e Q(X’) , and we obtain B, C ~ (X’)~ = (2"’)’ so that

and applying 3.3 and 2.9. Since B n C , also
Ae (X~)’ . Finally (r~ since X is bianalytic.

We let 3R= be the 03C3-algebra ba(X’) .

Definition 3.7. - If Y is a polish (a. e. a complete metric space which is sepa-

rable), l,.:;t By denote its Borel field. The 03C3-algebra By is the union of the clas-

ses also the union of the clashes G (a  (JO.) , where :
(i) F~ is the family of the closed sets, and Go of the open sets in Y.

(ii) The sets of the family F~ are countable intersections or unions of sets

belonging to F~ , with a  (3 according to whether ~ is even or odd. The sets

of the family G~ are countable unions or intersections of sets belonging to G ,
with a  P according to whether 03B2 is even or odd.

The families F 
Of 

with even indices as well as the families G ~ with odd indices
form the multiplicative class the families F with odd indices and the fami-

lies GO! with even indices the additive class 03B1 (for more details, we refer to

[20], p. 345).



We let ~’ - f(X , Y) _ F ; A E ~~ and F closed in Y~ .

PROPOSITION 3.8. - M ~ BY = P* .

Proof. - follows from the fact that M = (X’)* , BY = F*0 and monotonicity

arguments.

Let Y, and yEY. Define A(x) _ (v, y) and

A(y) = {x ~ X ; (x , y) E A} . Such sets will be culled sections of A .

From 3.8, we deduce the following result.

PROPOSITION 3,9, - I_f A E M ~ BY , then the sections x is taken

in X , are of bounded Baire class.

Definition 3.10. - For each a  let $ = $ (X , Y) be the class of those
1 ~ a

A E M ~ BY such that is an F -set, for each x EX, and C03B1 = C03B1 (X , Y )Y a a a

the class of the A E M ~ BY such that A(x) is a G 03B1-set, y for each x EX.

Hence C03B1 = c S03B1 .
. 3.9 can be reformulated as f ollowing.

PROPOSITION 3.1J.. -- M ~ (By = U03B103C91 S03B1 = U03B103C9, r; .

1 a 1 0153

Definition 3.12. - For each 03B1  03C91 , we introduce a class F03B1 = F03B1(X 9 Y) and

a class G03B1 = G03B1(X , Y) as follows.

(i) F0 = S0 , and G0 = C0
The sets of the family F03B2 are countable intersections or unions of sets

belonging with a  ~ , according to whether ~ is even or odd,

The sets of the are countable u.nions or intersections of sets belonging

to G03B1, with a  03B2 , according to whether 03B2 is even or odd,

By induc ti on, we verify a - c F03B1.
It is easily seen that F03B1 ~ S03B1 , and G03B1 ~ C03B1 9 for all a  

In fact the following deep property holds

T~OR~i 3 .12. - ~a = ~ , and ~ _ ~ f or each at  w ,ex Ci ----- a a 1

We remark that M is a a-algebra on X satisfying = bA(M) . Then
the theorem follows from recent results in descriptive set theory obtained by
A. LOUVEAU

The following proposition is easily established by induction.

PROPOSITION 3.13. - Let (X ) be a sequence of disjoint sets in M. If 03B1  w
-~--~ n n _..~ _.......... 1

and (A ) is a sequence in F
a 0153 ), then also A = U 

n 
n (X 

n 
x Y)

is in F
af 

s p. a ),
Definition 3.14. -  = S(X , Y) will be the cls,ss of the subsets A of X x Y



so that A(x) ~ !By , far each x and there exists B e satisfying
9t.

Obviously we have the following proposition.

PROPOSITION 3.15. - C is a 03C3-algebra.

Definition 3.16. -If x Y , then 1~ Y is defined by I~(x) = 
where denotes the closure operation.

The following description of IS will be useful. If y ~ Y and e > 0 , then

B(y , e) is the open ball with midpoint y and radius e . Let now (y ) be a
n n

dense sequence in Y. If, for each n = N and we take

PROPOSiTION 3,17. - Let A ’C X x Y , and suppose n (A) ct  03C91 , and
the sections A(x) , where x is taken in X , are F03B1 (resp. G03B1 sets, then

~ ~ ~Ct ~~~~~ ~£Y ~ 
~ -°°o-°~ a a

Proof. - It is clearly enough to prove only the first property. We proceed induc-

tively on If a = 0 , then every section A(x) of ,k iJ closed, and hence
A = As . Since, for every n e ?i , k G N , the Set e 3 , A e U © @y and

hence A e NOW, let the property be true, for ever§ a  Q , and assume A(x)
an lY set, for each x e X Clearly there is a sequence (A ) of subsets ofQ ’ ° 

n n

X x Y such that n X (A ) n = n X (A) ’ for each n ’ the set A n (x) is in U «) P a ’
for each n and each x e X , and A = n A if Q is even, A = U A if Qn n n n
is odd.

Let n e ?I be fixed. If, for each a  fl , we take

X = (x e X ; A (x) is precisely an F03B1 set) ,n,a n a

then A 
n,03B1 

= A 
n 

n (X 
n,a 

x Y) ~ F03B1 by induction . hypothesis. It follows from 3 , 13
that An = An,03B1 e F03B2 . Hence also A G F03B2 , which completes the proof.

PROPOSITION :3 ° ~~° ~ ~~~ ~ ~ ~ ° ~~~~ ~ ~ ~ ~ (By ~~ 

A(x) , where x is taken in X , fre of bounded Baire claj,§,.
Proof. - The ’bnly if" part is precisely 3 .9 . Assume A G 6 , then there exists

some B G % © BY such tha,t / B) If the sections £(x) are of bounded

Baire class, then, again by 3.9, this is also true for the sections (ANB)(x) of

ANB , and (BNA) (x) of It follows from 3 , 17 that ANB and are mem-

bers oi %« © 13~ . Hence

We introduce 4C ~ as the class of ~’(X , Y)-analytic subsets of X x Y .

From 3.8 and the fact that ~ ~ ~" , we obtain immediately the following proposition.



PROPOSITION 3.19. - 1K8 Y) .

The following result is similar to 3.17.

PROPOSITION 3.20. - Let A ~ X x Y , and suppose e If the section

A(x) is analytic in Y, for each x then A e d .

PBOpf. - For each x ~ X , A(x) is the result of a Souslin scheme (Fxc)c~R on

the paving of the closed subsets of Y. For each c ~ (R , define Fc ~ X x Y by

F~(x) = F~ if x e F~(x) = ~ if x ~ By 3.19, ~e find that

F 
c 
e F0 . Because A is the result of the sdheme (Fc)c~R and 1.14, we find

A e G .

PROPOSITION 3.21. - 6(X , Y) Y) .

Proof. - Let A e 6 , and take B e (By satisfying 03C0X(A A B) e 3 . Since

B~ = B n A B)) x Y] e 2R~ (By , A~ = A n A B) x Y) ~ a(X , Y)

by 3.20, and A = Bi u it follows that A e QL(x , Y) .

B. Separation results.

In this section, we will apply the general separation theorems obtained in the

preceding chapter to more concrete situations. We start with the following well-

known fact.

PROPOSITION 3.22. - Every polish space is homeomorphic to a G03B4-subset of
(0 , l)2014 , where (0, 1) is the unit-interval.

Proof. - Let Y be a polish space, d a complete metric for Y bounded by 1 ,
and (y ) a dense sequence in Y. Consider the following map

It is not difficult to verify that i is an inbedding.

Moreover, i(Y) is a G.-subset of (0 ~ 1 N . This follows from the fact that
is the intersection of the 2 sets

and

o , iJ" ; 8 y e Y with l y - d(y , I  oo/oo for k = i , ... , ni

which are G03B4 .
%le assume Y a fixed polish space. By 3.22, Y is homeomorphic to a G03B4 subset

Of a compact metric space K . Let X be the paving on K consisting of the clo-
Sed sets, which is of course compact.

PROPOSITION 3.23. - Ii (A ) is a sequence of analytic subsets of Y such that
- n n ---- .. « - , .. 

-. , ..... -, > - - -



n A = ø ’then there is a sequence (B ) in (By satisfying A C B , forn n 
’ 

n n "’ I "’ 

n n ~

each n, and n B = 

Proof. - Y can clearly be assumed a G. subspace of K . Since (A ) is
20142014~~ o n n

also a sequence of K-analytic subsets, we obtain by 2.10 a sequence (B’n)n in BK
satisfying B’ , n for each n , and D 

n B’ = Ø . We only have to take

In the remainder of this section, we assume (X , X , !R) satisfying 1° 2014~ 6°

of 3 (A). 
’

PROPOSITION 3.24. - ~ A ~ OL(x , Y) , then n (A) e 
Proof. - It is clear that Y can be assumed a G. subset of K. Because A,

considered as subset of X x K , is (It x K)-analytic, is £’-analytic by
1.15.

PROPOSITION 3 . 25 . - If (A ) is a sequence in OL(x, Y) such that D A = Ø ,
then there is a sequence (B ) with A C B ,for each n, and

03C0X(n Bn) ~ R .

Proof. - Again, we may assume Y a G. subset of K . Remark that each set A
is (X’ x K)-analytic. Since by 3.3 and 2.5, (x x K , X’ x X , n"(9t)) has pro-

perty (S) , 2.9 yields us a sequence (Bt) in (X’ x X)* = (B~ so that
n n K.

for each n, and B’) =? . If we take B =B’ Y) , the
required sequence (B ) is obtained.

(A) is a sequence in 0(x , Y) such that n A = Ø ,- n n 2014’2014201420142014*2014201420142014~2014 ~ ~ 
2014.2014201420142014~- n n ’

then there is a sequence (B ) in C(X ,Y) with A C B , for each n and
n B = Ø .
n n 

.

Proof. - By 3.25, there is a sequence (BI) in ~@ (8~ such that A ~ B ,201420142014 

nil 1 n n
for each n ~ and N = B~) ~ ~ . Applying 3.23, we find on the other side,
for each x e X , a sequence in satisfying A (x) C for each n,
and sets B are introduced by taking B (x) ==B’(x) if x ~ N ,
and Bn(x) = Bxn if x ~ N . Because A each set B belongs to

5(X , Y) , and it follows from the construction that An ~ Bn ’ for each n . and

~u~=~’
The following 2 corollaries are straightforward.

PROPOSITION 3.27. - Disjoint sets in Y) can be separated by sets in

S(X, Y) .

PROPOSITION 3.28. - Y) = 6(X , Y) .

We still assume (X , X , !R) with properties 1° 2014~. 6° of 3 ~A.). From 3.29 to



3. 36, Y and Z will be fixed poli sh spaces and D E 6(X , Y) ,

Definition 3.29. - A mapping 03C6 : D ~ X x Z will be called stable, if

o (p =: 03C0X ( 03C6 preserve the first coordinate).
Obviously cp is determined by n~ which we denote by 

Definition 3.30. - Let D ~ X x Z be a stable mapping. We will say that

cp is measurable if cp is Y) - Z) ) -measurabla.

PROPOSITION 3.31. - A stable D --~ X x Z is measurable if, and only

if, D ~ Z is (6(X , Y) - BZ)-measurable.
Proof.

1° Suppose cp measurable, Since X x Z ~ Z is (C(X ,
ble, it follows that is (C(X , Y) - BZ)-measurable.

2° Assume now 03C62 is (C(X , Y) - First, we verify that 03C6 is

(C(X , Y) - M ~ BZ)-measurable. Take then A E C(X , Z) , and consider B E 

satisfying 03C0X(A d B) ~ R . Clearly,

and furthermore

Hence ~~’(A ~ e(x , Y) .
Definition, 3. 32. -» If cp: D --~ X x Z i s a stable mapping, then the graph of ~p

will be the set r(c~) ~ £(x , .Y , ~ 2 (x , Y) ) 9 (x , y) 

PROPOSITION 3.33. - Z is stable and measurable, then 

is a member of Y x Z) .

Proof. - Let ~ ; D x Z be given by u(x , y , z) = (cp (x , y) , z) .
Then V is (~(X , Y x Indeed, D x Z ...~ Z is

(C(X , Y x Z ) - and D x Z ~ D is (6(x, Y x Z)-C(X , Y))-
measurable. The diagonal 6 of Z x Z belongs to since it is closed.

The fact that = -~’ (p ) completes the proof.

PROPOSITION 3.34. - If cp : D -.-~ X x Z is stable and measurable and

A e a(x , Y) , then n D) Z) .

Proof. - We may assume Y a G03B4-subset of a compact metric space K paving
X of its compact subsets. Let S be the paving on Z consisting of the closed

sets. By 3.33, ~(X , Y x z) , and hence, by 3.21, r(cp) n (A x Z) E 
Since n (A x Z) , considered as subset of X x K x Z , is (x’  K x S)-ana-
lytic, we obtain, by 1.15, that n n (A x Z) ) is x 

lytic. Thus cp(A n D) e a(x , Z) .

Definition 3.35. - ~de ~rill say that a stable map cp: D -~-~ X x Z is continuous



provided the partial map D(x) 2014) Z is continuous, for each x ~ X .

PROPOSITION 3.36. - If D ~ M ~ BY , and 03C6 : D ~ X  Z is a stable, measura-

ble and continuous map then (p is (M ~ (By - M ~ BZ)-measurable.

Proof. - Let B be a member of (Br.. Applying 3~18~ we only have to show

that the sections = ((%) )" (B(x)) are of bounded Baire class. But

this follows immediately from 3.9 and the fact that each is continuous.

Obviously, the following composition results hold.

PROPOSITION 3.37. - Let Y ~ Z , W be polish spaces. D ~ o(x , Y) ,
E ~ e(x , Z), D ~ X x Z E ~ X x W mappings so that 03C6(D) ~ E .

If (p and 03C8 are stable, then 03C8 o (p is stable. If moreover 03C6 and 03C8 are mea-

surable (continuous) then also ~ is measurable (continuous).

PROPOSITION 3.38. - If Y is a polish space and A=a(x , Y) , then there exist
a set D in ~) y and a continuous map so that

(p(D(x)) =A(x) , for each 

Proof. - Let A be the result of a regular scheme (M x Fc)c~R on P(x y Y) .
It is easily seen that we may assume F ~~y c  d , and

diam F ~ , where the diameter is taken with respect to a complete metric.

Obviously the set

belongs to 5~(x , x) . The map w on x will be given bY w(v) = >~ , which
is a unique point of Y . It is clear that 03C6 is continuous. Moreover

Dx> = iv e" ; x e ncv "’cl , and hence FDx» = ’cv l’c , %/hich iS Pre-
cisely A(x) .

Our next aim ix to establish the following result.

PROPOSITION 3.39. - If Y iJ a polish space, A e 6(X , Y) , then there
exists a set D e F0(X , 7l) , and an injective, stable, measurable and continuous

gQ D --* X x Y onto A .

We need the following lemma.

PROPOSITION 3.40. - Let (Y ) be a sequence of polish spaces, and let- n n - ........ - 

...... 
-- 

. - 

-- -..

Y = fl "£ . IIe consider , for each n e N , a member D of % © BY . Then the sub-. 

set D of X x Y , defined by D(x) = § D n (x) , belongs to Jli s 

Proof. - It is easily verified that, for each n , the set

is a member of M ~ BY . Since D = n D ,the proof is clear._Y n n

The main step in the proof of 3.3~ is the following proposition.



PROPOSITION 3.41. - Let (S be the class of subsets A of X x Y with the pro-

perty that there is a set K) , and an injective, stable, measurable and
continuous map (p : D 2014~ X x Y satisfying (p(D) = A . Then :

1~ C is stable under countable disjoint union ;

2~ S is stable under countable intersection.

Hence 0 is stable under countable union.

Proof. - It is clear that, in the definition of D above, the space N can be

replaced by a homeomorphic polish space.

1° Let (A ) be a sequence of disjoint members of 0 . For each n , we obtain

a set Dn in F0(X , Nn) , and an injective, stable, measurable and continuous map

D n satisfying (p (D ) = A . n Obviously D = U 
n 
D 
n 

is a member of

9~(x , yj,) . Define (p on D by taking 
n 
= cp n 

. Then (p satisfies the requi-
red properties and has image LL A .

2~ Let (A ) be a sequence of members of 0 . For each n, let D e K) ,
D 2014~ X x Y an injective~ stable, measurable and continuous map so

that ~(D~)=~- Let S =9~ .From 3.40, we know that the subset D of X x S ,
defined by 5(x) belongs to ~0 and hence to S) . We
consider the map ~: Y- given by s) = (~ (x ~ 
s = (sn)n . Using 3.3-L? we see that  is measurable and continuous.

If 0394 is the diagonal of then D = ()-1(X x A) ~ e(x , S) , and hence
D ~ s) , since D(x) is closed in D(x) ~ for each x ~ X . Let

L : A 2014~ Y be the canonical isomorphism, and (p : D 2014~ X x Y the stable map

given by 03C62 =  o It is easily checked that 03C6 is injective, measurable
and continuous. We also verify that (p(D) = D An . Because S and N are homeo-

morphic, the proof is complete.

PROPOSITION 3.42. - If Y is polish, then every member of BY is the continuous

injective image of a closed subset of 3T..

Proof. -By 3.22, Y can be assumed a G subset of (o , l)~ or (o , l(~.
We will obtain this result by applying 4.41 to the very special case where X

consists of a unique element. Take for instance X = (~ , X = (~ , X) and

!R = ~ , clearly satisfying 1~ 2014~ 60 of 3, 1. It is almost obvious that the class

C introduced in 3.41 consists of the continuous injective images of closed subsets
of K . let the reader the care of showing that every interval of the form

(a, b[ , with a  b , in (0, 1( is the continuous injective image of n it-

self. Therefore the products of such intervals are certainly members of 0 . By
3.41 in addition, D n cB is a a-algebra, and since it contains a generating sub-
class of the Borel field of (0, l(~ , the proposition is true.
Proof of 3.39. - Let C be as in 3.41. It is enough to prove 3.39, if .

A e (By , and if A ~ @(x , Y) with n (A) ~ ~ , since every element of



5(x , Y) is the disjoint union of such sets.

lo From 3.42, it follows that p(x , Y) and hence also P(x, Y) n cS .

Therefore 0 n cS , thus certainly M ~ (By. 
~ 0 .

2° Assume now A e 6(x , Y) , and e !R . Again by 3.42, there exist, for

each x e X , a closed subset D x of K , and a continuous injective map

(p~ : 2014~ Y onto A(x) . Let D(x) = D~ if x ~ and D(x) = ~ other-

wise. Define (p : D 2014~ X x Y by (p(x , v) = (x , ~(~)) . Clearly, by 3.17,
D e F0(X , N) , and 03C6 is an injective, stable, measurable and continuous mapping
with image A.

This completes the proof.
We will now pass to the proof of a converse result, hamely

THEOREM 3.43. - Let Y , Z be polish. If D ~ e(x , Y) and cp: D ~ X x Z

is an injective, stable and measurable mapping, then e 6(X , Z) .

PROPOSITION 3.44. - Let Y be polish, and (A ) a sequence of mutually dis-
joint elements of d(x , Y) . Then, there is a sequence (B ) of mutually dis-

joint members of 6(x , Y) such that A ~ B , for all n e N .

Proof. - Since A and A are disjoint A, and U . A are 
.

disjoint members of 0(X , Y) . By 3.27, we can find disjoint sets B and C
in S(X , Y) such that and We then separate similar-
ly A~ and An by sets B~ and C~ in S(x , Y) such that B c and

Repeating this, we complete the proof.

Proof of 3.43. - By 3.39 and 3.37, we may assume Y = K . For every c 6 R ~ defi-
ne E~ = (p(D n (X x y~)) , which is a member of OL(x , Z) , by 3.34. The scheme

regular, and since (p is injective, E , () ECII = ~ if jc’) I = )c"j I
and c’ 7~ c" . Applying 3.44, we obtain a regular scheme (B ) on 5(x , Z) so

that B~ and Bc’ () BCII = ~ if jc’j l = jc") and c’ / c" . For each 
let C~ = ((x , v , z) e X x ~ x Z ; c  v and (x, z) e B ) , which clearly be-
longs to 6(X , ~ x Z) . Hence also r* = f~ C~ is in 

c 

6(x , K x Z) .
It is easily seen that r~ .
If x e X , z e Z , then r*(x , z) = ~ 6 K ; (x, z) e U. B ) and thus

consists of at most one point Furthermore

and therefore in 6(X, Z). Since T(:p~ E x Z) by 3.33, the set

is a member of Z) . It follows that
(X x belongs also to CL(X , Z) and thus, by 3.34 and 3.28,

An obvious corollary of 3.43 is the isomorphism theorem.



PROPOSITION 3.45. - If Y, Z are polish, and cp: D ~ Z is injec-
tive and Borel measurable, then E 

For a slightly different proof of 3.45, the reader is referred 
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