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Séminaire CHOQUET 5=01
(Initiation & 1'Analyse)
17e année, 1977/78, n° 5, 23 p. 8 décembre 1977

A STABILIZATION PROPERTY AND ITS APPLICATIONS
IN THE THEORY OF SECTIONS

par Jean BOURGAIN

Abstract. - We introduce & stabilization property in descriptive set theory which
generalizes the topological and measure theoretical situations. An associated
theory of sections, for mesurable sets in products, is developped.

1, Preliminaries.

The aim of this section is to make the text more selfcontained. We will introduce
the various classical notions and properties, which are the starting point of this

work. They can also be found in [12].

Definition 1.1, — Let E be a set. A paving on E will be a class & of sub-

sets of E containing the empty set. We will call (E , &) a paved set.

Definition 1.2. = If (E, &) 4is a paved set, we denote by c¢& the class of
subsets A of E , such that EM belongs to & .
b&: &ncé
& (resp. & , & , g* ) is the stabilization of & for finite intersection
(resp. finite union, finite intersection and finite union, countable intersection
and countable union)

&(&) is the o-algcbra generated by & .

Definition 1.3. - Let (Ei , si)iel

subsets of E = [l E, of the form [| A, , where A, € & for each i €I, is
il i i i

be a family of paved sets. The set & of

caglled the product paving ﬂi Si .

PROPOSITION 1.4, - Let (E, , & ).
- i i‘iel
i €I . Then, & (ﬂi Si) contains the product o-algebra @_ G(Si) . If moreover
I is countable, then G(Hi Si) =®i G(Si) .

be paved sets such that Ei € Si , for each

In fact, only finite and countable products will be involved here.
Let (E , 8) Dbe a paved set, and let (Ki)iEI be a family of elements of & ., We
will say that (Ki)iGI has the finite intersection property provided Q@J5Ki ¢,

whenever J 1is a finite subset of I .

Definition 1.5. - A paving & on a set E is said to be compact (resp. semi-
compact) if. every family (resp. every countable family) of elements of & , posses-
sing the finite intersection property, has nonempty intersection.

By a simple ultra-filter argument, we obtain the following proposition.

PROPOSITION 1.6. ~ If & is a compact (resp. semi-compact) paving on E , then

also & is compact (resp. semi-compact).
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The following proposition is immediate,

PROPOSITION 1.7. -~ Let (Ei ’ gi)ieI be a family of paved sets. If each Si is
compact (resp. Semi-compact), then ﬂi Si on ﬂi Ei is compact (reqp. semi-—

compact).

We now pass to a proposition which will be often used later (especially in pro-

duct situations).

~ PROPOSITION 1.8. — Let (E, &) be a paved set, and f an application of E

into a set T . We assume that, for each x € F , the paving, consisting of the

sets f—l([x}) N4, Aeéd&, is semi-compact, If (An)n is a decreasing sequen-

ce in & , then

f(ﬂ A ) =N, f(A ) .

Proof. - It is clear that if x e M f(A ) , then the famlly £ ({x}) n A Thas
the finite intersection property. By hypothes1s, the set £ ({x}) n ﬂ A
contains some point y € E . Hence = f(y) € f(ﬂn An) , completing the proof.

N' will denote the set of all positive integers 1, 2, ..s
Let R = Uk_l g% y consisting of the finite complexes of integers. Take

R* = Ru {#} . If c € ®R*, let |c| be the length of ¢ . If ¢, de R, we wri-
te ¢c<d, if ¢ is an initial section of d . Let % = yﬁ-. If venl, and

c € R*, we write ¢ < v, if ¢ is an ihitial scction of v .

Definition 1.9, - Let (E ’ S) be a paved set. A Souslin scheme (Ac)ceﬁ on &

will be a mapping of R into & . The scheme (Ac)ceﬂ

A = A whenever ¢ < d . The result of the scheme (Ac)ceﬂ is the set

is said to be regular, if

Uv Moy Bo = U nk_ vk ? where v runs over 7 .

Let (E, &) be a paved set, and (Ac)ceﬂ

c € E% s We introduce the following sets

a scheme on & . For each complex

Ar - =U A
Lc] l<bl,...,nk<b LIPRPI
Ale) c<v nk— v ? where v runs over T, = {fven, c<v}

Ac]
nlscl,...,nkak
Obviously, the following properties hold.

il

Il

A(n1 y see nk)

PROPOSITION 1,10, - Ei c € R, then
A e &
L]
[end
A(c) Ac
Aec] < A[c]
Ale) = Un=1 Alc , n)

fel= U, 4c, ]
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{#3 v [fﬂc ; ¢ce R} is a paving on % , which we denote by T .

The reader will easily verify.

PROPOSITION 1.11. - f is a compact paving on T .

The following result is basic in the theory of analytic sets.

PROPOSITION 1.12. - Let (E ’ &) be a paved set, and (AC)CE(R a regular scheme
on &, with result A . If ve N, then ﬂk A[\)Ik] cA.,

Proof. - Suppose x € ﬂk A[\)|k] « For each k € N , we introduce the set

KK={ueﬂ; Wy SV eeey W <y and xeA“]_""’“‘k}’

which is clearlyaa nonenpty member of i . By the regularity of the scheme, the se-
quence (Kk)k is decreasing.
Since, by 1.6, also N  is compact, we obtain some V= ﬂk K . It follows that
(o]
C )
X € nk:.l Aplk A , completing the proof.

Definition 1.13, - Let (E, &) be a paved set. A subset L of E is said to
be &-analytic if it is the result of a Souslin scheme on & . Let (&) denote
the class of all &-analytic subsets of E , The members of c(&) (resp. bA(E) )
are called &-coanalytic (resp. &bianalytic).

The main property of @(&) is the following.

PROPOSITION 1l.14. - (a(&)) = a(&) .

In fact, the proof of this property consiste in the reduction of a scheme of
Schemes to a single scheme. Although the idea is quite simple, its working-out is

rather complicated. For the details, we refer the reader to [14], for instance.

The class of the analytic sets is stable under projection in the following sense.

PROPOSITION 1.15. - Let (E, &) and (F, %) be paved sets, such that the pa-
ving S is semi-compact. If A S E x F belongs to (& x 8) , then w(4) is a

member of (&) yif me: Ex F —3 E is the projection.

Proof. — Let A be the result of the scheme (Ec x Fc)ce(R on &x %, where
Ec € & and FC € &, for each ¢ € R, We define a scheme (Bc)CER on & by
. . c . .
taking B, = E, if nk='1 Fclk #¢ , and B, = ¢ , otherwise. Since, for each
ve L, we obtain that

(e Bl * g Fvlk) =M Bolk »
the result of the scheme (Bc)cF.(R is precisely TT(A) .

To each subset R of ®&* » we associate a transfinite system (Roz)oz<w s which

we define inductively as following. RO =R, and !

Ryq=1{c €R, there exists d €R, with ¢ <d, and c #4d}.
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If y is a limit ordinal, take RY =N R .

a< o
It is easily verified that the sequence (Ra)a<w is decreasing. Because R is at
- most countable, the sequence stabilizes. 1

Let i(R) = inf{a < w3 Ra = Ra+1} , which is called the ordinal of R .
We are now able to introduce the Lusin-Sierpinski index, which is of fundamental

importance in the study of Souslin schemes.,

Definition 1.16., - Let (E , &) be a paved set, and (AC)CER a regular scheme on
& . Supvose x ¢ E, and consider R(x) = flufceR; xe Ac} .
Let 7= i(R(x)) . If R(x)n =¢, let i(x) =1. If R(x)n ¢ ,let i(x) = © .
The ordinal i(x) is called the Lusin-Sierpinski index of the scheme (AC)CER in

the point x .
Remark that a predecessor of a member of R(X)a is also in R(x)a , and, in par-

ticular, R(x) #¢ if, and only if, ¢ € R(x) .
o o

PROPOSITION 1.17. - If A is the result of the regular scheme (4 ) , then
i(x) = o if, and only if, x e 4.

Proof.

ceR

1° If x € A, then x € r£<v A, » for some v e N . It is easily verified, using

induction, that, for each o < w the set R(x)a contains every initial section

1 ’
of v.

20 If T = i(R(x)) , then R(x)n = R(x) 1 and therefore every element of
R(x),n has a strict successor in R(x), . Assume R(x), # # . Then, we find some
v € L so that vlk € R(x)n y for each k € N . Ience also v|k e R(x) , for each

k € N, implying x € FL Avlk <A,

PROPOSITION 1.18. ~ If i(x) < w , then i(x) is never a limit ordinal.

Proof. = If 7 = i(x) would be a limit ordinal, we would obtain that
=N . #
R(x) < R(x)d For each o < 7, we have that R(X)a # R(x)a+l<’ and hence
R(X)a #@ . It follows that § € R(x)Tl , which is a contradiction.

Definition 1.19., - Let (E, &) be a paved set, and (Ac)oeR a regular scheme
on & .If xe B, then we define, for each c € R* , a subset R(c , x) of &*,

and an ordinal i(c , x) by taking
R(¢ , x) = R(x)
and
Rlc,x)=f{dae®*; xe Ac,d} if c#¢ .

If N=i(R(c, x)), let i(c, x) =17 if R(c, x)n =¢, and i(c , x) = w if
R(cyx)'n#¢°

Of course, i(¢ , x) = i(x) . If

index of the scheme (A ) if xe€ A . In virtue of 1.17 and 1.18, we obtain
c,d’der c

#¢ , then i(c , x) is the Lusin-Sierpinski

o
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that i(c , x) = w, if, and only if, xe Uc<v ﬂk Avlk , and ntherwise i(c , x)

is never a limit ordinal.

PROPOSITION 1.20. - If o < @ and ¢ , d € R* , then d e R(c , X)a if, and
only if, (e , d) € R(X)a .

Proof, - If ¢ =¢ , there is nothing to prove. If c # @ , we proceed again by

induction on o < “ﬁ o

PROPOSITION 1.21. - If c e R*, then
i(e , x) = inf(uh , sup i((e , n) , x) + 1) .

Proof. - If i(c , X) = W then R(c , x) contains every initial section of
some sequence v € % . Therefore R((c , vl) , X) contains every section of the
sequence 4 defined by Pe = Mg ° It follows that i((c ’ vl) , X) = @ .
Assume now i(c , x) < @, « Then also i((c , n) , x) < w, , for each n€N .

1°If nelN, and o<i((c, n), x), then R((c, n) , x)a # ¢ , and thus
contains ¢ « It follows that n € R(c , x)a , and thus ¢ € R(c , X)awl o Therefo-
re i(c , x) >a+ 1 . Since i({(c , n) , x) is not a limit ordinal, it follows
that i(c , x) >i((c , n) , x) . Because i(c , x) 4is not a limit ordinal,

i(e ) X) > supni((c , n) , X) .

2° If o= sup, i((e , n) , x) , then R((c , n) , x), = § , whenever ne N .
Suppose d € R(c , X)a and 4 #¢ .Then d=(n, d') , for some n e N, and
d' € R* . We obtain that d' e R((c , n) , X)a , a contradiction.

Hence R(c , x)a c {#} , and R(c , x)oﬂ_1 =¢ , implying i(c , x) £ @+ 1 . This
completes the proof.

Proceeding by induction, we deduce easily from 1.21 the following.

PROPOSITION 1.22. - If (Ac)ceR is a regular scheme on & , then

{xeE; i(c, x) > a}

is a member of &% , whenever c € R* and o < w .

2. A stabilization property.

The topic of this section is to define a stabilization property, which we will
call (S) o It will provide us a generalization of various situations, especially

the topological and measure-theoretical case.

Definition 2.1. - Let E be a set, and & , % pavings on E . We agree to say
that (B ,8&, M) 4is basic, if :

1° & is stable under finite intersection.
20If A€R, and B S A, then also B € RN .

Definition 2.2. - Let (E ,&, M) be basic. We say that (E , &, M) has pro-



perty (8) 4if, moreover, the following iz true.

Let (Ac)ceﬁ be a regular scheme on & with index i . Then, either the result of
the scheme is nonempty or {x € E; i(x) >a} e %, for some o< w (and hence
for the succeeding countable ordinals).

It is clear that (S) is preserved if & decreases, and M increases. The follow-

ing proposition will provide us a more explicit formulation of property (S) .

PROPOSITION 2.3. - Let (B y & m) be basic. Then, the following properties are
eguivalent.

(I) Let, for each c € R* , a transfinite system (Ag)a<w of sets in &% be
) — =

given, verifying :

0
o 1 @ 3 .
1 (A.C)cGR is a regular scheme on & ;

o .
20 a%2a%, ir w<p;

o 2ol o o
3 A Lg;l Ac,n ¢ o

i 0 . . < "
Then, either (AC)CER has a nonempty result, or }¢ € , for some o< @

(rz) (B, &, M) has property (S) .

(III) The same as (I), but where & is replaced by F
e ————————— 1

Proof.

(1) = (11)
Ag ={xeE; ilc, x) >a} , which belongs to & . Applying 1.21, we see that
the conditions of (I) are satisfied. Therefore, either (Ab)ceﬁ has nonempty re-
sult, or Ag ={xeE; i(x) >a} € f, for some a < w .
(II) == (III) : Let, for each c € R , a trans:finite system (Ac)a<w of sub-

1
sets of E Dbe given, satisfying 1o , 2° , 3° , We consider the scheme (Ag)

Assume (Ac)ceﬂ a regular scheme on & , and define

ceR
on & . The reader will easily verify by induction on o < w that

Bcfxeb; ile, x) >a}.

If (Ag)ceﬂ has an empty result, then {x € E; i(x) > a} , and hence Ag belong

to M, for some « < w .

(III) = (I) : This is obvious.

It is clear that if (E, &, M) has (S) , then also (E, &, %) has (8),
where R, = {pAeE, AC A €N g7 .
Some examples are in order. The first example requires the notion of a capacity.
Definition 2.4. - Let (E, & be a paved set such that & 4is stable under
finite union and finite intersection. An & -capacity on E will be a real valued

function I defined on 2E y verifying the following conditions :
16 T is increasing

A B = 1(4) < 1(B)

“e
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2° If (An)n is an increasing sequence of subsets of E , then
I(Uy &) =sup I(a) ;
30 If (Ah)n is a decreasing sequence in & , then
(N a)=inf I(4) .

Example 1. - Let (E , &) ©be a paved set such that & is stable under finite
union and finite intersection. Let I be an &~capacity with I(¢) =0 , If we ta-
ke M= f{AcE; I(A) =0}, then (E, &, M) has property (3) .

Proof., ~ Let, for each ¢ € R , a transfinite system (A:)d<w of subsets of E
be given, such that 1° , 20 , 30 of proposition 2.3 are satisfied.
If ce€ R with |c| =k and @<w , let
o

%b] n<c,“.m£% Ay Niyeeeyny ©

Lssume Ag ¢ M, for each «< w . Then, there is some ¢ >0 with I(Ag) > ¢,
for each o< w . By induction on k , we construct a sequence (nk)k of integers
satisfying I(Afﬁl,‘..’nkJ) > ¢, for each a < ® and k €N .

For each « < w, , we have that I(A¢ ) > ¢, and A¢ < U A[n]

1
Therefore, there must be some n, e N so that I(A[ ]) > ¢, for each a< w

1 1°

Suppose n, , ... , obtained verifving I( ) >e, for each o < w
1 By n ]

12y 1’

For each o < w 5 we have that

o1 1,
A s U .
[nl’.'.,nk] n A[nl""an!n]
Therefore, there must be again some o € N so that

) > ¢ , for each o< w, .

T(A%
(A[nl""’nk’nk+1] 1

So the construction is complete.

Since, in particular, (A{n nk]) is a decreasing scquence in & , and
’.ll,

]) > e, for each kel , we find that A[n . But, by

#
(A[nl,...,nk 1,...,nk] ¢
l.12, this set is contained in the result of the scheme (Ag)ceﬁ , which is there-

fore also nonempty.

Example 2. - Let (E , &) be a paved set such that & is semi~compact and sta-
ble under finite union and finite intersection., If M = {¢} , then (E , &, M)
has property (S) .

Proof. - We define I on 2° by taking I(¢) = O, and I(A) =1 if A#¢ .

Clearly I is an' &-capacity. We obtain a special case of example 1.
The following example is of different nature.

Example 3. - Let (B, 8 bea paved set such that & is gtable under countable

union and countable intersection. Let M be a class of subsets of E , such that :

1 M is a o-ideal
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20 If (& )a<w is decreasing in & , then there is some T < w, s that
1
A \A € %, whenever o« > T .
Then (E, &, M) has property (3) .
Proof. - Let, for each c € R* , a transfinite system (A:)a<w of subsets in
1

£¥ = 5 be given, such that 10 , 20 , 30 of prop031t10n 2e 3 are satisfied. There

exists T < w, so that An\Aa«E f, for each c € R” , and o > T . Remark that

1
(An\Aq+l) e M, If A2 ¢ ® . Then there is x in AQ not belonging to

ceﬂ*
ce(R.k(AT]\Am ) . By induction on k , we construct a sequence (nk) of integers
satisfying x € AE s for each k € N .
1’...,
Since x € An and x ¢ A%“A;“ , we obtain that x € A9+l < U A'ﬂ « Thus, there is
n €N with x € Ap .
1 n,
Suppose N, , ees , n, obtained such that =x € A'n » Since
1 l,l.o,l]k
X é A \An+l ’
l,...’nk nl’...’r)k
we obtain x e AT! <y A'n o Thus, there is n, . €N with
Diyeseyty N Nyyeee,y,n +1 =~
x e Al , completing the construction.
BysecerDorty o
In particular, x € An y for each k € N . Hence, x belongs to the result
1,'."

0
of the scheme (AC)CG(R .

The following example reduces as well to example 1 as to example 3.
Example 4. - Let (E, &, p) be a probability space, and take
R={ACE; p*a) =0}.

Then (E, &, M) has property (S) .
Also the following example, which is an application of example 3, is worth to be

mentioned,

Example 5. - Let E be a separable metric space, & the Baire o-algebra, and
M the class of first category sets. Then (E , &, M) has property (S) .

PROPOSITION 2.5. - Assume (E, &, %) with property (S) , and let (k, ¥) be

a paved set such thet ¥ is semi-eompact and stable under finite intersection. Let

ms: Ex K —>E be the projection, and consider

TH®) = (ASExK; m(a)e @} .

Then, (Ex X, & x X , n’l(m)) has property (3) .

Proof. - First, remark that (Ex XK , & x X , n-l(m)) is basic. For each ¢ € R/,

let (& )a<w1 be a transfinite system of subsets of E x K satisfying 1°, 20, 3°

of 2.3. Then, the subsets n(A35 of B also satisfy 1° , 2° , 3° of 2.3, with
respect to the paving & . Supoose there iz v e N so that ﬂc<v ﬂ(Ag) 20 .
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: 0
Since (| n(Ag) = ﬂ(F£<v Ag) , by 1.8, we see that also (Ac)ceﬁ. has a nonempty

result. Otherwise Ag e mLl(R) , for some a< w

l .

The next result requires the following lemma, which is more technical than basi-

cally difficult,

PROPOSITION 2.6. — Assume (E , &, %) with property (S) . Let, for each k e N,

and (c1 g v ck) € (R?)k , a set Wc c in &, and a transfinite system
l,l.‘, k
(v ) of subsets of E be given, so that following properties are sa-

cl,-co,ck QKU)].

tisfied :

o ] i ese < H

2° W cw H
cl,ooc,ck,¢ clycoo,c]{ ’
30 VO c wc ;
Cl,'..,ck l’...,Ck
o B .
40 v 2V if o <B ;
cl,oco,ck Cl,c.',ck — B‘,
50 Va = U Va = eee = o M
CireeesCp n (clyn),0213-°,ck Lh 01""’ck-1’(ck’n) ’
6o gl c v

v N
cl,oco,ck cl,co.,ck’¢

Then one of the following 2 alternatives must occur

10 Vg € 9 for some o < W, H

k
0 3 (] 1
2° There is a sequence (v )k .in U such that ﬂk W 1 24 .

vl|k,...,v Ik

Proof. - The Cantor enumeration of N x N induces a map

R —> uk Rk S C > (di 9 ses dE'C]) ’

where the number kch of complexes is, of course, only dependent on |c| o This

map is extended to R"™ by taking k., = 1 and dé = ¢ .

0

For each c¢ € R* , we define

Oy and A: = v¥

1 k k if a>0.
c dc,...,dc]°| dé,...,dclcl

We show that the conditions 1°, 29, 3° of 2.3 are verified.

1° To see that the scheme (Ag)ceﬂ on & is regular, take c! , c" e R with

c! < c" , Then

k k
1 1 ct c!
klc'l‘s klc"l and dc| < dc“ y eee dc! I f dcl l .
We only have to apply properties 1° and 2°,
2° This follows immediately from properties 3° and 4°.
3° Assume c € R* , and lcl =r . We distinguish 2 cases.
. _ . : ‘ L A

Case 1 : k.= kr+1 o ~ There is some k =1, ous , k, so that dc,n = dc if
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4 # %, and dﬁ n= (dk , n) , whenever ne N . We find
ol o:+1 ol ol
A =U v =U_ Vv k =U A U A .
n 1 n c,n n c,n
c "4 ,...,(d ,n),...,d r dg preeerd T+t ’ ’
Case 2 ¢+ k k + 1 — Then d2 = dz if 1 <4<k and dkr"'l =n
— "' Tr+1 * c,n c R T c,n !
whenever n € N . VWe ‘obtain
AE*I = Vatl k, © Val k = U, Votl k, = un Ag,n *
dc,...,dcl‘ dc,...,dcr,¢ d_yese,d Tyn

Since (B, 5, N possesses (s) , cither Ag e N, for some o < w , or there
is ven with N, Avlr £ . Remark that kAg = vg . If v €N, then there is a
sequence (v ) in U such that i< vz <v , whenever r € N and k <k, . If
k e N is fixed, then there exists r e N with k<k, , and V Pl < d€|r ,
each &£ =1, .es , k. Then

AO

for

=W Sl
1 k 1 ki, °
V!r d\)’r,...,d\)fr Vv Ik,ooo,\) Ik

This completeg the proof.

THEORRY 2.7, - Assume (E , &, ®) with property (S) , and (K , X) a paved

set such that ¥ is semi-compact and stable under finite intersection. We consider

the projections ™t E x Kk+l —3> E x Kk , and Py ¢ E x Kk -—> E ., For each
kelN, let (xg)a<w be a transfinite system of subsets of E x Kk s 80 that
1

following properties are satisfied :

0 45 (gxxk)-a.nal jcin E x KX ;
X, is analytic in
A AXL AL a<p

s (Xg;l) *

30 Xk
Assume pl(Xl) é N, for each o< “ﬁ « Then there exist x € B and (yk)k in KE
such that (x y Ty 9 see s yk) € Xk for each ke N .

Proof, - Let Xg be the result of a regular schene (Yk) er OB & x Kk o For

ezch k € N and (cl y ees 5 O ) € (R*)E , define

W = pk(ﬂk Yﬁz x Kk—z))

CprevesCp

and

o _ K - o
Yo reenre, ™ B (M (P(ey) x &) )
The reader will easily make out that 1° —» 6° of proposition 2.6 are verified.
Hence there are 2 possibilities :

1° There is o < W) such that Wg = pl(X$> e M.

2° There is a sequence (v‘k)k in T such that ﬂk W Kk contains some

1
point x € E , Therefore v ey eee, vk
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ﬂk_i(Yzz (z) x Kk_z) #@ , for each ke N ,
- k

. N y
By the semi-compactness of the paving X~ on K£—= ﬂk Kk , We get
7

nknm(yli(x)x LK) =00, ”I () « T, K)#¢,

and thus contains a point ("k)k of ﬂk Kk . For each integer 4 , we have
(x , Ty 9 o0e Yz) € nk Yzﬁlk

We pass to the following first corollary.

< X£ , completing the proof,

PROPOSIZION 2.8, -~ If (E, &, M) has property (S) , then also (E, (&) , M)
has property (S) .

Proof. - Let, for each c € R* , & transfinite system (Agsa<w of subsets of E

be given, satisfying
i° Ap) is a regular scheme on d(&) ;
: c’/ceR ?

o 5.
20 a%2 AP ir a<p;

o1 o
30 AC < U A(C n) .

Teke K =N, and let ¥ = {#} u {{n} ; n e N}, which is a compact paving on
K , stable under finitc intersection. For each k€ N and o< w
Xg = {(x , c) €E x Kk 35 X € A } y which clearly satisfy the conditions 1°, 2°, 3°

of 2.7. Therefore we have one of the following 2 possibilities ¢

y we define

19 There is a < w, so that p (X% e % . But 4%t cU a%= p (x% , implying
") 1 1+ 7} n°n 1+
A

e,

2° There is x € E and v € % such that (x , v|k) € Xﬁ , for each k€N ,
0 . 0 .
Then x € ] Av]k , and thus in the result of the scheme (Ac)ceﬂ . So the proof is

given.

THEOREH 2.9, - Assume (E , &, @) with property (S) , and let (Ah)n be a se-
quence in d(&) such that n & = ¢ . Then there is a sequence (Bn)n, in & so
that A <B , foreach n, and N B €%,

— “n Tn? ———— = ‘n'n

Proof. - Each set Ah is the result of a regular scheme on & with index in .
Let K=% and X=7 y whick is a compact paving on K , stable under finite in-

tersection. For each k e N, and o< w o, we define

Xg'= ﬂn{(x , vt y eee vk) ;i ((V

k
n?’ *°° Yn) , X) > o} ,
which again satisfy the conditions 1¢, 2°, 3° of 2.7 (ef. 1.21). Thus there are 2

alternatives :

i . o .
1° There is @ < @ so that pl(Xl) e M. If we let Bn=={x € B ; 1n(x)>’a+ 1},

then Bn belongs to 8* , and An < Bn « Moreover

= F%{X € B

3v, €% such that in(vn y X) > a}

~e

{xeE; 3Iveqn such that (x, v) e X?} = pl(X§3 ,
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U

thus a member of T .
0]

K

e ex?,
K

for each ke N . Let ne N be fixed, We find that in((v;, ey ), x) >0,

for every ke N, implying x € An .« Hence x € ﬂn An , which is a contradiction.

k 1
2° There is xe€ E , and a sequence (v )k in N so that (x, v

In particular we obtain the Novikov separation result (see [24]).

PROPOSITION 2.10. - Let (E , &) be a paved set where & = & is semi-compact.
If (An)n is a sequence in (&) such that n, 4 = @ , then there is a sequecnce

$ e c -
(B), in &* so that A <B , for each n, and N B =¢ .

3. Applications in section theory.

A. Classes of sets.
The starting point will be a paved sct (X , %¥) such that :
1o X € X ;
2° ¥ is stable under finite union and finite intersection ;

3° ¥ is bianalytic (i. e. % < pd(%) ).
Let further T be a class of subsets of X satisfying

4° §t is a o-ideal ;

50 If A€ M, then there is B e M n ¥* so thet A B H

6° (X, £, M) has property (3) .

Definition 3.1. = If & 1is a class of subsets of X, we let &' consist of the

A ©X such that there is Be€ § with AABe % . It is clear that (') = &' ,

PROPOSITION 3.2. — If A € X' , then there exist B, C e v(%) satisfying
BCA, ASC,and A\BeER, CLeD.

Proof. - Take A, €X sothat AQ Al € R, and consider De M n %* with

A A Al <D, It is easily seen that B = Al\D and C = A, u D satisfy.

1

PROPOSITION 3.3. - (X, ' , %) has property (3) .

Proof. — It is clear that (X, %' , ) is basic. It follows from 3.2 that if
(Ac)ceﬁ is a regular scheme on %' , then there is a regular scheme (Bc)ceﬁ on
bA(%) such that Bc c A, and Ac\;Bc € M, for each ce€ R,Hence D = Uc(Ac\Bc)

is still a member of T . Let i and j be the indices of the schemes (Ac)ceﬂ

and (Bc)cER s respectively. By induction and using 1.21, we see that

{xex; ilc, x) >a, jlc, x) £a} is contained in D , for each c € R* and
@ < & . Since, by 2.8, also (X , b&(%) , M) has property (S) , there are 2
possibilities :

1° The scheme (Bc)ceR , and hence certainly (Ac)ceﬂ y have a nonempty result.
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2° There is o < w, so that {xe X3 j(x) >a}e R. Since

{xex; ilx) >a} <{xe x; jlx) >ajuD,
also |
{xe Xx; i(x) >a}e % .

So the proof is complete,.

PROPOSITION 3.4, - (%')* = (%) .
Proof.

1° Since %' € (%*)' , and (%™)' 4is stable under countable union and countable

intersection, (20)* < (%*)' .

2° Define Y= {A € %% ; {A}' < (%')*} , which of course contains % . Moreover
Y is stable under countable union and countable intersection. We give the details
for the intersection, the argument for the urion being similar.
Let thus (A.n)n be a sequence in Y , A =N A and B some set in {A}' . If,
for each n , we take B = (An\&A\B)) u (B\) , then B is in {An}’ , and hence
in (%')* . Thus also B = n, B, isin (2')* . So we proved that Ae Y . There-
fore (¥ cy , implying that (g#)r < ()™,

The following is left as an exercice for the reader.
PROPOSITION 3.5. - A&(%') = (z)' .

PROPOSITION 3.6. - bd(%)! = va(%') = (%) .

Proof. - It follows from 3.5 that ba(%)' < b(A(%)') = b(%') . If 4 e va(%') ,
then 4 e a(%') , XM e d(%') , and we obtain B, C e (£')% = (£*)' so that
A=B, XNAMSC and B nC €N, applying 3.3 and 2.9. Since BM €BncC, also
A e (%x)‘ o Finally (ﬁ*)' < pa(%)! , since % is bianalytic.

We let Th= X, £, M) be the o-algebra bA(Z') .

Definition 3.7. = If Y is a polish (a. e. a complete metric space which is sepa~
rable), 1.t By denote its Borel field., The o-algebra BY is the union of the clas-

ses Fa , and also the union of the classes Ga (a < Qh) y where :

(i) Fy is the family of the closed sets, and G, of the open sets in Y .

(ii) The sets of the family FB are countable intersections or unions of sets
belonging to Fa y with o < 3 according to whether {3 is even or odd. The sets
of the family GB are countable unions or intersections of sets belonging to Ga .
with o < B according to whether B is even or odd.

The families Fa with even indices as well as the families Ga with odd indices
form the multiplicative class o , the families Fa with odd indices and the fami-
ltes G with even indices the additive class o« (for more details, we refer to

o
[20], p. 345).
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We let P=@X,¥Y)={AxF; Ac¥ and F closed in Y} .

PROPOSITION 3.8. - W® B, = e% .,

Proof. - This follows from the fact that M= (%')*, @ = Fg and monotonicity

arguments,

et ASXxY, x€X and yeY.Define A(x) = {yeY; (x, y) € A} and
A(v) = {xeX; (x,y) €A} . Such sets will be culled sections of A .

From 3.8, we deduce the following result.

PROPOSITION 3.9. - If A e Ti® (BY , then the sections A(x) , where x is taken

in X, are of bounded Baire class.

Definition 3.10. - For each o < W let Sa = SQ(X , Y) be the class of those
Ae@® 6, such that A(x) is an F-set, for each x€ X, and & = z;a(x , ¥
the class of the A€ W ® (BY such that A(x) is a Go;set, for each x€ X .

Hence Goz = C Sa .

- 349 can be reformulated as following.

PROPOSITION 3.11e - T ® By = Ua<w SQ, = ch<w Gy *
1 1

Definition 3.12. - For each « < w, , we introduce a class § = SQ(X , Y) and

a class 8 = ga(X , Y) as follows.
(i1) The sets of the family SB are countable intersections or unions of sets
belonging to Sa , With o < B , according to whether B is even or odd.

The sets of the family 95 are countable unjons or intersections of sets belonging

to Qd y with o < B , according to whether B is even or odd.

By induction, we verify thet §y= 8,

It is easily seen that 501 ng , and N CGQ , for all a < w .
In fact the following deep property holds

THEOREM 3.12, - 301:5& s and 90=2;a for each o< W

Proof. - We remark that I is a o-algebra on X satisfying M= wl(T) . Then
the theorem follows from recent results in descriptive set theory obtained by

A. LOUVEAU (see [21]).

The following proposition is easily established by induction.

PROPOSITION 3.13. - Let (X ) ~be a sequence of disjoint sets in M. If a< w
and (An)n is a sequence in §, (resp. S, ), then also 4 = Un[An n (Xn x Y)]
) . e
is in 30{ (resg. 8, ).

Definition 3.14., - & =6(X, Y) will be the class of the subsets A of X x ¥
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so that 4a(x) e By , far each x € X, and there exists B € Ti® B, satisfying
nX(A ABe®. '

Obviously we have the following proposition.

PROPOSTIION 3.i5. = €& is a o-algebra,

Definition 3.16. = If A S X x Y, then & SX x Y is defined by A (x) = A(%) ,

where ~  denotes the closure operation.

The following description of K? will be useful. If y €Y and e >0, then
B(y , €) is the open ball with midpoint y and radius € . Let now (yn)n be a

dense sequence in Y . If, for each n € N and k € N, we take

Xy = mylh 0 (Xx By, , $)7,

then
~S _ 1
A = rk LQ(Xn,k x B(Yn ’ E)) .

PROPOSITION 3.17. - Let A X x Y, and suppose ﬂX(A) €R.,If w<w , and

the sections A(x) , where x is taken in X , are 5& (resp. N ) sets, then

A€ 5, (resp. 9y )e

Proofs - It is clearly enough to prove only the first property. We proceed induce
tively on o+ If o= 0, then every section A(x) of A is closed, and hence
A = . Since, for every n eN, k €N, the set X, €%, Aet®ay and
hence Ae 30 . Now, let the property be true, for every « < B, and assume A(x)
an SB set, for each x e X . Clearly there is a sequence (An)n of subsets of
X x Y such that nX(An) = nX(A) , for each n , the set An(x) is in U _, F_,
for each n and each xe€ X, and A = ﬂn A if B diseven, A=U A if B
is odd.

Let ne § be fizxed. If, for each o < B , we take

Xn,a = {xe X; An(x) is precisely an §_ set} ,
then A‘1 = A.n n (Xn o Y) € Sa y by induction hypothesis. It follows from 3.13
iy 9
b—3 5.‘, > Es i [ ]
that A UQ<B An,a € 5 Hence also A 8 ? which completes the proof

PROPOSITION 3,18, ~Let A€ & , Then A€ T® BY if, and only if, the sections

A(x) , vhere x is taken in X , are of bounded Baire class.

Proof. - The only if" part is precisely 3.9. Assume A € & y then there exists
some B € %i® B, such that er(A A B) € R . If the sections 4i(x) are of bounded
Baire class, then, again by 3.9, this is also true for the sections (A\B)(x) of
ANB , and (B\)(x) of B\ . It follows from 3.17 that AN\B and B\A are mem-
bers of T ® @Y . Hence

A= (B\(B\)) u (a\B) € Zv® By «

We introduce & = A(X , Y) as the class of ®(X , Y)-analytic subsets of X x Y .
From 3.8 and the fact that & = &* » we obtain immediately the following proposition.
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PROPOSITION 3.19. - WM® @y ca(x, ¥) .

The following result is similar to 3.17.

PROPOSITION 3.20. - Let A © X x Y, and suppose w,(A) € % . If the section

A(x) is analyticin Y , for each xe X , then Ae o .

Peoof, - For each xe€ X, A(x) is the result of a Souslin scheme (FX)CER
the paving of the closed subsets of Y . For each ce R , define Fc CXx Y by
F (x) = F’; if xemg(a), and F(x) =¢ if x¢ n(A) . By 3.19, we find that
Fc € SO « Because A Ais the result of the sdheme (FC)OGR and 1.14, we find

Aed.,
PROPOSITION 3.21. - &(X , 1) ca(x, Y) .
Proof, - Let A€ &, and take Be M® @y, satisfying nX(A A B) € R o Since
B, = B n [(X\ﬂX(AAB)) x Y]e M@ By , 4

1 1
by 3.20, end A =3B, U A, , it follows that A€ ax , 1) .

=An[r5{(AAB)xY)ea(X,Y)

Be Separation results.

In this section, we will apply the general separation theorems obtained in the
preceding chapter to more concrete situations. We start with the following well-
known fact,

PROPOSITION 3.22. - Every polish space is homeomorphic to a Gé-subset of
(o, l}~ , where (0 , 1) is the unit-interval.

Proofe ~ Let Y be a polish space, d a complete metric for Y bounded by 1 ,
and (yn)n a dense sequence in Y . Consider the following map

i: Y-—(0, 1)—Il
y— (d(y , o)),
It is not difficult to verify that i is an inbedding.
Moreover, i(Y) is a Gé—subset of (O ’ l}g o« This follows from the fact that

i(Y) 4is the intersection of the 2 sets
. N ..
{(g)ye (0, 1)~; infg =
and
N
Ni(g) elo, % Eyey with |g -aly, y)| <i for k=1, ..., n)

which are G6 .

We assume Y a fixed polish space. By 3.22, Y is homeomorphic to a G, subset

8
of a compact metric space K . Let ¥ be the paving on K consisting of the clo-

sed sets, which is of course compact.

PROPOSITION 3,23, - If (An)n is a sequence of analytic subsets of Y such that
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A _ O 3 sati ~ri <
ﬂn Ah = ﬁ , then there is a sequence (Bn)n in @Y atisfving An Bn , for

each n , and ﬂn Bn =¢ .

Proofe -~ Y can clearly be assumed a G6 subspace of ¥ . Since (An) is
also a sequence of X-analytic subsets, we obtain by 2.10 a sequence (Blfl,n in &K
satisfying An < Bﬁ , for each n , and ﬂn Bg =@ . We only have to take

=B!' A Y
Bn Bnﬂ-c

In the remainder of this section, we assume (X , ¥, M) satisfying 10 ——y 60
of 3 (a). ’

PROPOSITION 3.24, - If A € &(X, Y) , then ﬂX(A) e A(z) .

Proof. - It is clear that Y can be assumed a G, subset of X . Because A ,

6
congsidered as subset of X x K, is (%' x X)-analytic, jX(A) is ZX'-analytic by

1015-

PROPOSITION 3,25, - If (An)n is a sequence in A(X , Y) such that n, A = g,
then there is a sequence (B ) in M @ with A ©B_ , for each n, and
n ) 2 nn — n n e ———————— ————
€
nx( " Bn 3.

Proof. - Again, we may assume Y a G6 subset of K . Remark that each set An
is (%' x X)-analytic. Since by 3.3 and 2.5, (X x K, %' x X , nil(m)) has pro-
perty (S) , 2.9 yields us a sequence (B1), in (%' x ¥)*=u® 8 so that

c 1 1 17 = 1 -
A SB}, for each n, and m (N Bn) €% . If we take B = B! n (X x Y) , the

required sequence (Bn)n is obtained.

]

THEOREI 3.26. - If (An)n is a sequence in (X , Y) such that n A = g,
then there is a sequence (Bn)n in &(X , Y) with A <B , for each n, and
nn Bn = ¢ *

Proof. - By 3.25, there is a sequence (Br'l)n in W® @Y such that An c 3; y
for each n, and N = nX(ﬂn B;l) € M . Applying 3.23, we find on the other side,
for each x € X , a sequence (Bz)q in && satisfying An(x) < Bz y for each n ,
and rh Bz =@ « The sets B~ are introduced by taking Bn(x) = Bﬁ(x) if x gN,

- _nX . 1)
and Bn(x) =B, if x €N . Because nx(Bn A Bn) N , each set B~ belongs to
&(x , Y) , and it follows from the construction thet An < Bn y for each n , and

FL B,=¢.

The following 2 corollaries are straightforward.

PROPOSITION 3.27. - Disjoint sets in (X , Y) can be separated by sets in
e(x, Y) .

PROPOSITION 3.28. - b&X , Y) =6(X, Y) .

C, Stable manpingse.

We still assume (X , % y M) with properties 1° —3» 69 of 3 GA). From 3.29 to
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3,36, Y and Z will be fixzed polish spaces and D e &X , Y) ,

Definition 3.29, — A mapping ¢ ¢ D —3 X x Z will be called stable, if
nX °o = TTX ( ¢ preserve the first coordinate).

Obviously ¢ dis determined by m, o ¢ , which we denote by @, .

Definition 3.30, — Let ¢ : D —» X x Z be a stable mapping. We will say that
@ is messurable if o is (8(X , Y) - &(X , 2))-weasurable.

PROPOSITION 3.31l, -~ A stable map ¢ ¢ D —3 X x Z2 is measurable if, and only

if, ¢, ¢ D=>2 is (8(Xx, ¥) - 8;)-measurable.
Proof,

1° Suppose ¢ measurable. Since My ¢ Xx Z-—32 is (&(X , Z) = (BZ)-measura-
ble, it follows that ¢, is (a(x, 1) - 8,)-ueasurable.

29 Assume now 9 is (6(X , Y) - (BZ)-mcesurable. First; we verify that o is
ex, ) -m® (BZ)-measurable. Take then A € G(X , Z) , and consider B € TB® &,
satisfying nX(A A B) € % . Clearly,

-1 -1
m (g " (2) & 7 (B)) < m(a s B)
and furthermore }
-1 -1
¢ (8)(x) = g, (A(x))(x) € & .
Hence (p—l(A) es(x, ¥Y) . |

Definition 3.32% -If ¢ : D —aX x Z is a stable mapping, then the graph of ¢
will be the set I'(w) = {(x , v, cpz(x , 7)) (x,y)eDn}.

PROPOSITION 3.33. ~If ¢ : D —> X x Z is stable and measurable, then I‘(cp)
is a member of &(X , Y x Z) .

Proofe — Let § : Dx Z —> Z x Z be given by m(x, v, z)= (cpz(x ’ y) ’ z) .
Then ¢ is (&(x , Y x2) - (BZ ® (BZ)-measurable. Indeed, m, Dx Z -~ Z is
(6(x , ¥ x z) - 8,)-measurable, and ™, ¢ Dx Z -—> D is (&(X, Yx 2)-8(X, Y))-
measurable, The diagonal A of Z x Z belongs to (BZ ® (BZ , S8ince it is closed.

The fact that I(y) = ¢"*(A) completes the proof.

PROPOSITION 3.34. - If ¢ : D —» X x Z is stable and measurable and
Aea(x, Y), then (A nD) € &x, 2) .

Proof. - We may assume Y a Ga-—subset of a compact metric space K with paving
X of its compact subsets, Let & be the paving on Z consisting of the closed
sets. By 3.33, I'(g) e S(X, Y x 2) , and hence, by 3.21, I'(w) n (A x 2) € AX,¥Txz).
Since T(p) n (A x Z) , considered as subset of X x Kx Z , is (%' xX x %)-ana-
lytic, we obtain, by 1.15, that (4 n D) = nXxZ(F(cp) n(ax32)) is (%' x $)-ana-
lytice Thus (4 nD) € A(X , 2) .

Definition 3.35, - We will say that a stable map ¢ : D —» X x Z is continuous
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provided the partial map (cpz)x : D(x) —3 7 is continuous, for each x € X .

PROPOSITION 3.36. = If D e Ii® By » and 9 : D —>Xx Z is a stable, measura-

ble and continuous map, then ¢ _:i_._s_ (':il@ (BY -0 ® (Bz)-measurable.

Proof., - Let B be a member of U.Q& (B « Applying 3.18, we only have to show
that the sections ¢ (B) (z) = ((cpz) )—l(B(x)) are of bounded Baire class. But
this follows immediately from 3.9 and the fact that each (cpz)X is continuous.

Obviously, the following composition results hold,
PROPOSITION 3.37. - Let Y, Z , W be polish spaces, D € &(X, ¥) ,

Ee@(X, Z) y @2 D->Xx2Z and ¢y : E —>»X x W mappings so that (p(D) CE.
If ¢ and ¢ are stable, then ¥ o ¢ is stable. If moreover o and ¢ are mea-

surable (continuous) then also § o ¢ is measurable (continuous).

PROPOSITION 3.38, — If Y is a polish space and A € Uz, Y) s then there exist
a set D in $O(X y &) , end a continuous map ¢ : N —> Y so that
o(d(x)) = A(x) , for each x € X .

Proof. — Let A be the result of a regular scheme (Mc x Fc)ceﬁ on P(X, Y) .
It is easily seen that we may assume F, #d, F 2Py, if c<d, and
diam Fc & 1/|c| y where the diameter is taken with respect to a complete metric.

Obviously the set

v c<v [¢3

D=y, N, (M "n)’qculcl-k x 7))

belongs to SO(X , M) « The map ¢ on T will be given by ¢(v) = c<v F_ , which
is a unique point of Y . It is clear that ¢ is continuous. lioreover

oo . Vi — |
D(x) = {ven; xe ﬂc<\) Hc} , and hence «(D(x)) = U

cisely A(x) .

veD(x) N <y Fo » which is pre-

Our next aim is to establish the following result.

PROPOSITION 3.39. ~ If Y is a polish space, and A € &(X , Y) , then there

exists a set D € SO(X , ) , and an injective, stable, measurable and continuous

map ¢ : D—3>Xx7Y onto A,
We need the following lemma.

PROPOSITION 3.40. - Let (Yn)n be a sequence of polish spaces, and let
Y = IL Yn « We consider, for each n €N , a member Dn of e «BY « Then the sub-

'set D of X x Y, defined by D(x) Mo o(¥) , belongs to T® & .

Proof. - It is easily verified that, for each n , the set

Dn':'{(x’Y)GXXY; (X,.Vn)EDn}

is a member of % ® (13! . Since D = ﬂn ﬁn y the proof is clear.

The main step in the proof of 3.39 is the following proposition.
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POPOSITION 3,41, — Let ® ©be the class of subsets A of X x Y with the pro-

perty that there is a set D € ESO(X , ) , and an injective, stable, measurable and

continuous map ® : D —3 X x Y satisfying cp(D) = A . Then

10 ® is stable under countable disjoint union

2° ® is stable under countable intersection.

Hence ® n c® is stable under countable union.

Proof. ~ It is clear that, in the definition of ® above, the space I can be

replaced by a homeomorphic polish space.

19 Let (An)n be a sequence of disjoint members of ® , For each n , we obtain
a set D in SO(X fﬂh) y and an injective, stable, measurable and continuous map
@, ¢ D, —>» Xx Y satisfying @, (D ) = A« Obviously D = Un D~ is a member of
ﬁO(X ’ ﬂ) o Define ¢ on D by taking cpl Dn =@ . Then « satisfies the requi-
red properties and has image Un An .

2° Let (An)n be a sequence of members of @ . For each n , let D e %O(x , T
and 9, * Dn —> X x Y an injective, stable, measurable and continuous map so
that (D) =4 . Let S = /& . From 3.40, we know that the subset B of X x S
defined by D(x) = TL D (x) , belongs to I® & , and hence to o(x , S) o We
consider the map @ @ ﬁ -~ X x v given by cpz(x , 8) = (cp 2(x , 8 ))n , if

(s ) « Using 3.31, we see that cp is measurable and contlnuous.
If 4 is the diagonal of Yo, then D= (3) " (X x 4) € &(X , S) , and hence
De f’.:'O(X y S) , since D(x) is closed in DT(x) , for each x € X . Let
¢t : A—>7Y be the canonical isomorphism, and ®: D=3 X x Y the stable map
given by @, = ¢ o (52“)) « It is easily checked that ¢ is injective, measurable
and continuous. We also verify that (D) = nn A . Because S and T are homeo-

morphic, the proof is complete.

PROPOSITION 3.42. -~ If Y is polish, then every member of BY is the continuous

injective image of a closed subset of 7.

Proof., - By 3.22, Y can be assumed a G6 subset of (0 ’ l}lg— or (0 ’ l[y- .
We will obtain this result by applying 4.41 to the very special case where X
consists of a unique element, Take for instance X = {#} , % = {# , X} and
%= {#} , clearly satisfying 1° —> 6° of 3, 1. It is almost obvious that the class
® introduced in 3.41 consists of the continuous injective images of closed subsets
of M . We lct the reader the care of showing that every interval of the form
(@, b(, with a<b, in (0, 1( is the continuous injective image of T it~
self. Therefore the products of such intervals are certainly members of ® , By
341 in addition, ® nc® is a o-algebra, and since it contains a generating sub-

class of the Borel field of (0 ’ 1(y— y the proposition is true.

Proof of 3.39. — Let ® be as in 3.41. It is enough to prove 3.39, if
AeW® By, and if A€ &(X, ¥) with nX(A) € R, since every element of
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(X , Y) 4is the disjoint wnion of such sets.

1° From 3.42, it follows that @®(X , Y) €@ , and hence also ®(X,Y) €0 nco .
Therefore T:® By “® nchH , thus certainly M By co.

20 Assume now A e (X, Y) , and nX(A) € N, Again bv 3.42, there exist, for
each x € X, a closed subset D* of % y and a continuous injective map
¢ : D" —> Y onto A(x) . Let D(x) = DX if x e me(4) , and D(x) = ¢ other-
wise. Define ¢ : D—=—=3Xx Y by olx, v) = (x, ¢k(v)) . Clearly, by 3.17,
De SO(X , ) , and @ is an injective, stable, measurable and continuous mapping
with image 4 .
This completes the proof.,

We will now pass to the proof of a converse result, hamely

THEORE! 3.43. - Let Y , 2 be polish. If D€ ®&(X, Y) and @: D ——3X x Z

is an injective, stable and measurable mapping, then o(C) € &(X , z7) .

PROPOSITION 3.44, - Let Y be polish, and (An)n a seguence of mutually dis-
joint elements of (X , Y) . Then, there is a sequence (Bn)n of mutually dis-
joint members of ®&(X , Y) such that A SB , forall nelN.

Proof. - Since A and A are disjoint for m#n, A, and U __ A are
— m n 1 n22 n
disjoint members of a(X , Y) . By 3.27, we can find disjoint sets B1 and C1

. P C . K
in &(x , Y) such that Al < B1 , and Un22 An Cl « We can then separate similar-

and C, in &(X, Y) such that B <C, , and

ly A2 and Un23 An by sets B 5

2
02 < Cl « Repeating this, we complete the proof.

Proof of 3.43. - By 3.39 and 3.37, we may assume Y = 7l . For every c € R , defi-
ne Ec = cp(D n (X x ﬂc)) , which is a member of (X , Z) , by 3.34. The scheme

(Ec)ce(R is regular, and since ¢ is injective, B, nEc" =¢ if J|e'| = [cn|
and c' # c¢" . Applying 3.44, we obtain a regular scheme (Bc)ceﬁ on &(X , Z2) so
that B, ©B, and B, nB,, =¢ if |c'| = |c"| and c' #c" . For each c € R,

let Ccz{(x, vV,2)eXxAxZ; c¢c<vy and (x, z)EBC} , which clearly be-
longs to &(X , M x Z) . Hence also I'* = f‘lk U|c|-—=k C, is in &6(x, nx3z).

It is easily seen that I'(¢) < I'* .,

If xeX, zeZ, then IT™(x, 2z)={ven; (x, z)eﬂc<\)Be} and thus
consists of atmost one point of % . Furthermore

nXxZ(F*) =Y, nc<\) B, =0, U|c|=1«: Be
and therefore in &(X , 2z) . Since I'(g) € &(X , T x Z) by 3.33, the set
ﬂxe(I‘*\l“(cp)) = nXxZ(r*)\(P(D) is a member of &(X , 3) . It follows that
| (X x 2)\@(D) belongs also to G(X » Z) and thus, by 3.34 and 3.28,

CP(D) e (X y Z) .

An obvious corollary of 3.43 is the isomorphism theorem.
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PROPOSITION 3.45. - If Y, Z are polish, De By and ¢: D —3 7 is injec—

tive and Borel measurable, then «(D) € B, -

For a slightly different proof of 3.45, the reader is referred to [15].
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