Étant donnée une variété kählérienne compacte , on étudie dans l’espace vectoriel réel de cohomologie de Dolbeault le cône convexe des classes de Kähler ainsi que celui, plus grand, des classes de courants positifs fermés de type . Lorsque est projective, les traces de ces cônes sur l’espace de Néron-Severi engendré par les classes entières sont respectivement le cône des classes de diviseurs amples et l’adhérence de celui des classes de diviseurs effectifs.
Let be a compact Kähler manifold. In the real vector space of Dolbeault cohomology classes of type , we study the convex cone of Kähler classes and the larger cone of classes of positive closed currents of type . When is projective, theses cones cut out, on the Néron-Severi subspace generated by integral classes, the cone of classes of ample divisors and the closure of the cone of classes of effective divisors.
Mot clés : variété kählérienne, variété hyperkählérienne, cône ample, cône nef, cône pseudo-effectif, classes grandes, cône de Kähler, courant, métrique singulière, décomposition de Zariski, volume d'un fibré en droites, variété uniréglée, courbe mobile
Keywords: Kähler manifold, hyperkähler manifold, ample cone, nef cone, pseudo-effective cone, big cone, Kähler cone, current, singular metric, Zariski decomposition, volume of a line bundle, uniruled variety, mobile curve
@incollection{SB_2004-2005__47__199_0, author = {Debarre, Olivier}, title = {Classes de cohomologie positives dans les vari\'et\'es k\"ahl\'eriennes compactes}, booktitle = {S\'eminaire Bourbaki : volume 2004/2005, expos\'es 938-951}, series = {Ast\'erisque}, note = {talk:943}, pages = {199--228}, publisher = {Soci\'et\'e math\'ematique de France}, number = {307}, year = {2006}, mrnumber = {2296419}, zbl = {1125.32009}, language = {fr}, url = {http://www.numdam.org/item/SB_2004-2005__47__199_0/} }
TY - CHAP AU - Debarre, Olivier TI - Classes de cohomologie positives dans les variétés kählériennes compactes BT - Séminaire Bourbaki : volume 2004/2005, exposés 938-951 AU - Collectif T3 - Astérisque N1 - talk:943 PY - 2006 SP - 199 EP - 228 IS - 307 PB - Société mathématique de France UR - http://www.numdam.org/item/SB_2004-2005__47__199_0/ LA - fr ID - SB_2004-2005__47__199_0 ER -
%0 Book Section %A Debarre, Olivier %T Classes de cohomologie positives dans les variétés kählériennes compactes %B Séminaire Bourbaki : volume 2004/2005, exposés 938-951 %A Collectif %S Astérisque %Z talk:943 %D 2006 %P 199-228 %N 307 %I Société mathématique de France %U http://www.numdam.org/item/SB_2004-2005__47__199_0/ %G fr %F SB_2004-2005__47__199_0
Debarre, Olivier. Classes de cohomologie positives dans les variétés kählériennes compactes, dans Séminaire Bourbaki : volume 2004/2005, exposés 938-951, Astérisque, no. 307 (2006), Exposé no. 943, pp. 199-228. http://www.numdam.org/item/SB_2004-2005__47__199_0/
[1] T. Bauer, , A. Küronya & T. Szemberg - “Zariski chambers, volumes, and stable base loci”, J. Reine Angew. Math. 576 (2004), p. 209-233. | MR | Zbl
[2] “Variétés Kähleriennes dont la première classe de Chern est nulle”, J. Differential Geom. 18 (1983), no. 4, p. 755-782 (1984). | MR | Zbl
-[3] “Symplectic packing in dimension ”, Geom. Funct. Anal. 7 (1997), no. 3, p. 420-437. | MR | Zbl
-[4] -, “From symplectic packing to algebraic geometry and back”, in European Congress of Mathematics, Vol. II (Barcelona, 2000), Progr. Math., vol. 202, Birkhäuser, Basel, 2001, p. 507-524. | MR | Zbl
[5] “Le cône kählérien d'une variété hyperkählérienne”, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 10, p. 935-938. | MR | Zbl
-[6] -, “Cônes positifs des variétés complexes compactes”, Thèse, Grenoble, 2002.
[7] -, “On the volume of a line bundle”, Internat. J. Math. 13 (2002), no. 10, p. 1043-1063. | MR | Zbl
[8] -, “Divisorial Zariski decompositions on compact complex manifolds”, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 1, p. 45-76. | EuDML | Numdam | MR | Zbl
[9] “The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension”, eprint math.AG/0405285. | Zbl
, , & -[10] “On compact Kähler surfaces”, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, p. vii, xi, 287-302. | EuDML | Numdam | MR | Zbl
-[11] “Une généralisation du théorème de Kobayashi-Ochiai”, eprint math.AG/0506366. | Zbl
& -[12] “Algebraicity of the ample cone of projective varieties”, J. Reine Angew. Math. 407 (1990), p. 160-166. | EuDML | MR | Zbl
& -[13] “Zariski decomposition of divisors on algebraic varieties”, Duke Math. J. 53 (1986), no. 1, p. 149-156. | MR | Zbl
-[14] “On a problem of Zariski on dimensions of linear systems”, Ann. of Math. (2) 137 (1993), no. 3, p. 531-559. | MR | Zbl
& -[15] “Champs magnétiques et inégalités de Morse pour la -cohomologie”, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 4, p. 119-122. | MR | Zbl
-[16] -, “Singular Hermitian metrics on positive line bundles”, in Complex algebraic varieties (Bayreuth, 1990), Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, p. 87-104. | MR | Zbl
[17] -, “Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials”, in Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, p. 285-360. | MR | Zbl
[18] -, “On the geometry of positive cones of projective and Kähler varieties”, in The Fano Conference, Univ. Torino, Turin, 2004, p. 395-422. | Zbl
[19] “Numerical characterization of the Kähler cone of a compact Kähler manifold”, Ann. of Math. (2) 159 (2004), no. 3, p. 1247-1274. | MR | Zbl
& -[20] J.-P. Demailly, T. Peternell & M. a. Schneider - “Compact complex manifolds with numerically effective tangent bundles”, J. Algebraic Geom. 3 (1994), no. 2, p. 295-345. | MR | Zbl
[21] “Asymptotic invariants of base loci”, eprint math.AG/0308116, Ann. Inst. Fourier, à paraître. | Numdam | Zbl
, , , & -[22] “On Zariski problem”, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 3, p. 106-110. | MR | Zbl
-[23] “Affine open subsets of algebraic varieties and ample divisors”, Ann. of Math. (2) 89 (1969), p. 160-183. | MR | Zbl
-[24] “Compact hyper-Kähler manifolds : basic results”, Invent. Math. 135 (1999), no. 1, p. 63-113. | MR | Zbl
-[25] -, “Erratum : “Compact hyper-Kähler manifolds : basic results” [Invent. Math. 135 (1999), no. 1, 63-113 ; MR1664696 (2000a :32039)]”, Invent. Math. 152 (2003), no. 1, p. 209-212. | Zbl
[26] -, “The Kähler cone of a compact hyperkähler manifold”, Math. Ann. 326 (2003), no. 3, p. 499-513. | MR | Zbl
[27] “The Zariski decomposition of log-canonical divisors”, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, p. 425-433. | MR | Zbl
-[28] “Holomorphic mappings of polydiscs into compact complex manifolds”, J. Differential Geometry 6 (1971/72), p. 33-46. | MR | Zbl
-[29] “Divisors on symmetric products of curves”, Trans. Amer. Math. Soc. 337 (1993), no. 1, p. 117-128. | MR | Zbl
-[30] “The cone of curves of a surface”, Math. Ann. 300 (1994), no. 4, p. 681-691. | EuDML | MR | Zbl
-[31] “Courants kählériens et surfaces compactes”, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 1, p. vii, x, 263-285. | EuDML | Numdam | MR | Zbl
-[32] -, “Le cône kählérien d'une surface”, J. Math. Pures Appl. (9) 78 (1999), no. 3, p. 249-263. | MR | Zbl
[33] Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. | MR | Zbl
-[34] -, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. | MR | Zbl
[35] “Symplectic packings and algebraic geometry”, Invent. Math. 115 (1994), no. 3, p. 405-434. | EuDML | MR | Zbl
& -[36] “A numerical criterion for uniruledness”, Ann. of Math. (2) 124 (1986), no. 1, p. 65-69. | MR | Zbl
& -[37] “On the -th problem of Hilbert”, Amer. J. Math. 81 (1959), p. 766-772. | DOI | MR | Zbl
-[38] “Stable base loci of linear series”, Math. Ann. 318 (2000), no. 4, p. 837-847. | MR | Zbl
-[39] -, “Base loci of linear series are numerically determined”, Trans. Amer. Math. Soc. 355 (2003), no. 2, p. 551-566 (electronic). | MR | Zbl
[40] “A counterexample to the Zariski-decomposition conjecture”, Hodge Theory and Algebraic Geometry, Hokkaido Univ., Infinite Analysis Lecture Notes, vol. 19, Kyoto University, 1994, p. 96-101.
-[41] -, “Zariski-decomposition and Abundance”, preprint, 1997.
[42] “On the nef cone of symmetric products of a generic curve”, Amer. J. Math. 125 (2003), no. 5, p. 1117-1135. | MR | Zbl
-[43] “Stable base loci, movable curves, and small modifications, for toric varieties”, eprint math.AG/0506622, Math. Zeit., à paraître. | Zbl
-[44] “The Lelong number of a point of a complex analytic set”, Math. Ann. 172 (1967), p. 269-312. | DOI | EuDML | MR | Zbl
-[45] “The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface”, Ann. of Math. (2) 76 (1962), p. 560-615. | MR | Zbl
-