Une courbe projective et lisse de genre , non hyperelliptique, admet un plongement canonique dans un espace projectif . Un résultat classique affirme que l’idéal gradué des équations de dans est engendré par ses éléments de degré , sauf si admet certains systèmes linéaires très particuliers. Mark Green en a proposé il y a vingt ans une vaste généralisation, qui décrit la résolution minimale de en fonction de l’existence de systèmes linéaires spéciaux sur . Claire Voisin vient de la démontrer dans un certain nombre de cas, et en particulier pour les courbes générales de genre donné. On essaiera d’expliquer les idées qui sous-tendent cette démonstration difficile.
A smooth projective curve of genus , non hyperelliptic, admits a canonical embedding in a projective space . It is classical that the graded ideal of equations of in is spanned by its elements of degree , unless carries some very particular linear systems. Twenty years ago Mark Green proposed a far-reaching generalization, describing the minimal resolution of in terms of the existence of certain linear systems on . Claire Voisin proved recently certain cases of the conjecture, notably the case of generic curves. We will try to explain the ideas which enter into this difficult proof.
Mot clés : conjecture de Green, syzygies, indice de Clifford, courbes $p$-gonales
Keywords: Green conjecture, syzygies, Clifford index, $p$-gonal curves
@incollection{SB_2003-2004__46__1_0, author = {Beauville, Arnaud}, title = {La conjecture de {Green} g\'en\'erique}, booktitle = {S\'eminaire Bourbaki : volume 2003/2004, expos\'es 924-937}, series = {Ast\'erisque}, note = {talk:924}, pages = {1--14}, publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France}, address = {Paris}, number = {299}, year = {2005}, mrnumber = {2167199}, zbl = {1080.14041}, language = {fr}, url = {http://www.numdam.org/item/SB_2003-2004__46__1_0/} }
TY - CHAP AU - Beauville, Arnaud TI - La conjecture de Green générique BT - Séminaire Bourbaki : volume 2003/2004, exposés 924-937 AU - Collectif T3 - Astérisque N1 - talk:924 PY - 2005 SP - 1 EP - 14 IS - 299 PB - Association des amis de Nicolas Bourbaki, Société mathématique de France PP - Paris UR - http://www.numdam.org/item/SB_2003-2004__46__1_0/ LA - fr ID - SB_2003-2004__46__1_0 ER -
%0 Book Section %A Beauville, Arnaud %T La conjecture de Green générique %B Séminaire Bourbaki : volume 2003/2004, exposés 924-937 %A Collectif %S Astérisque %Z talk:924 %D 2005 %P 1-14 %N 299 %I Association des amis de Nicolas Bourbaki, Société mathématique de France %C Paris %U http://www.numdam.org/item/SB_2003-2004__46__1_0/ %G fr %F SB_2003-2004__46__1_0
Beauville, Arnaud. La conjecture de Green générique, dans Séminaire Bourbaki : volume 2003/2004, exposés 924-937, Astérisque, no. 299 (2005), Exposé no. 924, pp. 1-14. http://www.numdam.org/item/SB_2003-2004__46__1_0/
[B] “On the Clifford index of algebraic curves”, Proc. Amer. Math. Soc. 97 (1986), p. 217-218. | MR | Zbl
-[E] “A remark on the syzygies of the generic canonical curves”, J. Differential Geom. 26 (1987), p. 361-365. | MR | Zbl
-[ELMS] “The Clifford dimension of a projective curve”, Compositio Math. 72 (1989), p. 173-204. | Numdam | MR | Zbl
, , & -[G] “Koszul cohomology and the geometry of projective varieties”, J. Differential Geom. 19 (1984), p. 125-171. | MR | Zbl
-[H-R] “New evidence for Green's conjecture on syzygies of canonical curves” 31 (1998), p. 145-152. | Numdam | MR | Zbl
& -[L] “Brill-Noether-Petri without degenerations”, J. Differential Geom. 23 (1986), p. 299-307. | MR | Zbl
-[Lo] “On the graded Betti numbers of plane algebraic curves”, Manuscripta Math. 64 (1989), p. 503-514. | MR | Zbl
-[M] “Varieties of special divisors on a curve, II”, J. reine angew. Math. 233 (1968), p. 89-100. | MR | Zbl
-[N] “Über die invariante Darstellung algebraischer Funktionen”, Math. Ann. 17 (1880), p. 263-284. | JFM | MR
-[P-R] “On the canonical ring of a curve”, in Algebraic geometry and commutative algebra, Vol. II, Kinokuniya, Tokyo, 1988, p. 503-516. | MR | Zbl
& -[P] “Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen”, Math. Ann. 88 (1923), p. 242-289. | JFM | MR
-[S-D] “On Petri's analysis of the linear system of quadrics through a canonical curve”, Math. Ann. 206 (1973), p. 157-175. | MR | Zbl
-[S1] “Syzygies of canonical curves and special linear series”, Math. Ann. 275 (1986), p. 105-137. | MR | Zbl
-[S2] -, “Green’s conjecture for general -gonal curves of large genus”, in Algebraic curves and projective geometry (Trento, 1988), Lect. Notes in Math., vol. 1389, Springer, Berlin, 1989, p. 254-260. | MR | Zbl
[S3] -, “A standard basis approach to syzygies of canonical curves”, J. reine angew. Math. 421 (1991), p. 83-123. | MR | Zbl
[T] I Bigas -Duke Math. J. 111 (2002), p. 195-222. | MR | Zbl
[V1] “Courbes tétragonales et cohomologie de Koszul”, J. reine angew. Math. 387 (1988), p. 111-121. | MR | Zbl
-[V2] -, “Green’s generic syzygy conjecture for curves of even genus lying on a surface”, J. Eur. Math. Soc. 4 (2002), p. 363-404. | MR | Zbl
[V3] -, “Green's canonical syzygy conjecture for generic curves of odd genus”, Compositio Math. (à paraître), preprint arXiv : math.AG/0301359.