Je présenterai des résultats de T. Ekedahl et H. Esnault sur les variétés projectives lisses sur un corps de caractéristique strictement positive, disons , dont deux points peuvent être liés par une chaîne de courbes rationnelles, par exemple faiblement unirationnelles, ou de Fano. Notamment : 1) sur un corps fini, de telles variétés ont un point rationnel, résultat qui généralise le théorème de Chevalley-Warning ; 2) sur un corps algébriquement clos, de telles variétés ont un groupe fondamental fini d’ordre premier à ; 3) sur un corps fini de cardinal , deux variétés propres et lisses qui sont birationnelles ont même nombre de points rationnels modulo . Les démonstrations utilisent la cohomologie rigide, -adique, de P. Berthelot.
I present results due to T. Ekedahl and H. Esnault concerning smooth projective varieties adefined over a field of positive characteristic, say , two points of which can be linked by a chain of rational curves. Examples are given by weakly unirational, or Fano varieties. Notably: 1) over a finite field, such varieties have a rational point, this generalizes the Chevalley-Warning Theorem; 2) over an algebraically closed field, the fundamental group of such varieties is finite and its order is prime to ; 3) over a finite field of cardinality , the number of rational points of two proper smooth varieties that are birational are congruent mod. . The proofs use the -adic rigid cohomology defined by P. Berthelot.
Mot clés : variété de Fano, variété rationnellement connexes par chaînes, points rationnels, groupe fondamental, cohomologie rigide, pentes
Keywords: Fano varieties, chain rationaly connected varieties, rational points, fundamental group, rigid cohomology, slopes
@incollection{SB_2002-2003__45__125_0, author = {Chambert-loir, Antoine}, title = {Points rationnels et groupes fondamentaux : applications de la cohomologie $p$-adique}, booktitle = {S\'eminaire Bourbaki : volume 2002/2003, expos\'es 909-923}, series = {Ast\'erisque}, note = {talk:914}, pages = {125--146}, publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France}, address = {Paris}, number = {294}, year = {2004}, mrnumber = {2111642}, zbl = {1078.14024}, language = {fr}, url = {http://www.numdam.org/item/SB_2002-2003__45__125_0/} }
TY - CHAP AU - Chambert-loir, Antoine TI - Points rationnels et groupes fondamentaux : applications de la cohomologie $p$-adique BT - Séminaire Bourbaki : volume 2002/2003, exposés 909-923 AU - Collectif T3 - Astérisque N1 - talk:914 PY - 2004 SP - 125 EP - 146 IS - 294 PB - Association des amis de Nicolas Bourbaki, Société mathématique de France PP - Paris UR - http://www.numdam.org/item/SB_2002-2003__45__125_0/ LA - fr ID - SB_2002-2003__45__125_0 ER -
%0 Book Section %A Chambert-loir, Antoine %T Points rationnels et groupes fondamentaux : applications de la cohomologie $p$-adique %B Séminaire Bourbaki : volume 2002/2003, exposés 909-923 %A Collectif %S Astérisque %Z talk:914 %D 2004 %P 125-146 %N 294 %I Association des amis de Nicolas Bourbaki, Société mathématique de France %C Paris %U http://www.numdam.org/item/SB_2002-2003__45__125_0/ %G fr %F SB_2002-2003__45__125_0
Chambert-loir, Antoine. Points rationnels et groupes fondamentaux : applications de la cohomologie $p$-adique, dans Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Exposé no. 914, pp. 125-146. http://www.numdam.org/item/SB_2002-2003__45__125_0/
[1] “Zeroes of polynomials over finite fields”, Amer. J. Math. 86 (1964), p. 255-261. | MR | Zbl
-[2] Cohomologie cristalline des schémas de caractéristique , Lecture Notes in Math., vol. 407, Springer Verlag, 1974. | MR | Zbl
-[3] -, “Géométrie rigide et cohomologie des variétés algébriques de caractéristique ”, in Introductions aux cohomologies -adiques (Luminy, 1984), Mém. Soc. Math. France, vol. 23, 1986, p. 7-32. | MR
[4] -, “Cohomologie rigide et cohomologie rigide à supports propres. Première partie”, Prépublication, IRMAR, Université Rennes 1, 1996.
[5] -, “Dualité de Poincaré et formule de Künneth en cohomologie rigide”, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 5, p. 493-498. | MR | Zbl
[6] -, “Finitude et pureté cohomologique en cohomologie rigide”, Invent. Math. 128 (1997), no. 2, p. 329-377, Avec un appendice en anglais par A.J. de Jong. | MR | Zbl
[7] Notes on crystalline cohomology, Math. Notes, vol. 21, Princeton Univ. Press, 1978. | MR | Zbl
& -[8] Lectures on algebraic cycles, Duke University Mathematics Series, IV, Duke University Mathematics Department, Durham, N.C., 1980. | MR | Zbl
-[9] -, “On an argument of Mumford in the theory of algebraic cycles”, in Journées de Géometrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn, 1980, p. 217-221. | MR | Zbl
[10] “Decomposition of the diagonal and eigenvalues of Frobenius for Fano hypersurfaces”, 2003, arXiv:math.AG/0302109. | MR | Zbl
, & -[11] “Zero cycles on surfaces with ”, Compositio Math. 33 (1976), no. 2, p. 135-145. | Numdam | MR | Zbl
, & -[12] “On exponential sums in finite fields. II”, Invent. Math. 47 (1978), no. 1, p. 29-39. | MR | Zbl
-[13] “Remarques sur les groupes de Kähler nilpotents”, Ann. Sci. École Norm. Sup. 28 (1995), p. 307-316. | Numdam | MR | Zbl
-[14] “À propos du groupe fondamental des variétés rationnellement connexes par chaînes”, 2003, arXiv:math.AG/0303051. | MR
-[15] “Weights in rigid cohomology applications to unipotent -isocrystals”, Ann. Sci. École Norm. Sup. 31 (1998), no. 5, p. 683-715. | Numdam | MR | Zbl
-[16] “-isocristaux unipotents”, Compositio Math. 116 (1999), no. 1, p. 81-110. | MR | Zbl
& -[17] -, “Pentes en cohomologie rigide et -isocristaux unipotents”, Manuscripta Math. 100 (1999), no. 4, p. 455-468. | MR | Zbl
[18] “Surfaces de Del Pezzo sans point rationnel sur un corps de dimension cohomologique un”, 2003. | MR | Zbl
& -[19] “Etale -covers in characteristic ”, Compositio Math. 52 (1984), no. 1, p. 31-45. | Numdam | MR | Zbl
-[20] Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. | MR | Zbl
-[21] -, “Variétés rationnellement connexes”, in Séminaire Bourbaki, Vol. 2001/02, Astérisque, Soc. Math. France, Paris, 2004, exposé 905, p. 243-266. | Numdam
[22] “Théorie de Hodge II”, Publ. Math. Inst. Hautes Études Sci. 40 (1972), p. 5-57. | Numdam | MR | Zbl
-[23] -, “La conjecture de Weil, I”, Publ. Math. Inst. Hautes Études Sci. 43 (1974), p. 273-307. | Numdam | MR | Zbl
[24] “On the rationality of the zeta function of an algebraic variety”, Amer. J. Math. 82 (1960), p. 631-648. | MR | Zbl
-[25] “Sur le groupe fondamental d'une variété unirationnelle”, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 12, p. 627-629. | MR | Zbl
-[26] “Varieties over a finite field with trivial Chow group of -cycles have a rational point”, Invent. Math. 151 (2003), no. 1, p. 187-191, arXiv:math.AG/0207022. | MR | Zbl
-[27] “Fonctions associées aux -isocristaux surconvergents. I. Interprétation cohomologique”, Math. Ann. 296 (1993), no. 3, p. 557-576. | MR | Zbl
& -[28] -, “Fonctions associées aux -isocristaux surconvergents. II. Zéros et pôles unités”, Invent. Math. 127 (1997), no. 1, p. 1-31. | MR | Zbl
[29] “-adic periods and -adic étale cohomology”, in Arithmetic geometry (Arcata, 1985), Contemporary mathematics, vol. 67, Amer. Math. Soc., 1987, p. 179-207. | MR | Zbl
& -[30] “Families of rationally connected varieties”, J. Amer. Math. Soc. 16 (2003), no. 1, p. 57-67. | MR | Zbl
, & -[31] “Finiteness of de Rham cohomology in rigid analysis”, Duke Math. J. 113 (2002), no. 1, p. 57-91. | MR | Zbl
-[32] “Crystals and the de Rham cohomology of schemes”, in Dix exposés sur la cohomologie des schémas [34], p. 306-358. | MR | Zbl
-[33] Groupes de monodromie en géométrie algébrique, Lecture Notes in Math., no. 288-340, Springer Verlag, 1972-73, SGA 7.
, & -[34] Dix exposés sur la cohomologie des schémas, Adv. Stud. in pure Math., North-Holland, 1968. | Zbl
et al. -[35] “On the De Rham cohomology of algebraic varieties”, Publ. Math. Inst. Hautes Études Sci. 45 (1975), p. 5-99. | Numdam | MR | Zbl
-[36] “Complexe de de Rham-Witt et cohomologie cristalline”, Ann. Sci. École Norm. Sup. 12 (1979), p. 501-661. | Numdam | MR | Zbl
-[37] “Smoothness, semistability and alterations”, Publ. Math. Inst. Hautes Études Sci. 83 (1996), p. 51-93. | Numdam | Zbl
-[38] “Every rationally connected variety over the function field of a curve has a rational point”, 2002, http://www-math.mit.edu/~dejong/papers/familyofcurves3.dvi. | Zbl
& -[39] “Number of points of function fields over finite fields”, 2002, arXiv:math.NT/0210202.
-[40] “On a theorem of Ax”, Amer. J. Math. 93 (1971), p. 485-499. | MR | Zbl
-[41] -, “Le niveau de la cohomologie des intersections complètes”, in Groupes de monodromie en géométrie algébrique [33], SGA 7, p. 363-399.
[42] -, “Slope filtration of F-crystals”, in Journées de Géométrie algébrique de Rennes, Astérisque, vol. 63, Soc. Math. France, Paris, 1979, p. 113-164. | Numdam | MR
[43] “Some consequences of the Riemann hypothesis for varieties over finite fields”, Invent. Math. 23 (1974), p. 73-77. | MR | Zbl
& -[44] “Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology”, J. Ramanujan Math. Soc. 16 (2001), no. 4, p. 323-338. | MR | Zbl
-[45] -, “Finiteness of rigid cohomology with coefficients”, 2002, arXiv:math.AG/0208027. | Zbl
[46] -, “Fourier transforms and -adic Weil II”, 2002, arXiv:math.NT/0210149.
[47] “A vanishing theorem for Fano varieties in positive characteristic”, 2002, arXiv:math.AG/0201183.
-[48] “Algebraic cycles and the Weil conjectures”, in Dix exposés sur la cohomologie des schémas [34], p. 359-386. | MR | Zbl
-[49] “Shafarevich maps and plurigenera of algebraic varieties”, Invent. Math. 113 (1993), p. 177-216. | MR | Zbl
-[50] “Un invariant birationnel des variétés de dimension 3 sur un corps fini”, J. Algebraic Geometry 9 (2000), no. 3, p. 451-458. | MR | Zbl
& -[51] “Computing zeta functions of Artin-Schreier curves over finite fields”, LMS J. Comput. Math. 5 (2002), p. 34-55 (electronic). | MR | Zbl
& -[52] “The theory of commutative formal groups over fields of finite characteristic”, Russian Math. Surveys 18 (1963), p. 1-80. | MR | Zbl
-[53] -, “Notes on the arithmetic of Fano threefolds”, Compositio Math. 85 (1993), no. 1, p. 37-55. | Numdam | MR | Zbl
[54] “Frobenius and the Hodge filtration”, Bull. Amer. Math. Soc. 78 (1972), p. 653-667. | MR | Zbl
-[55] -, “Frobenius and the Hodge filtration (estimates)”, Ann. of Math. 98 (1973), p. 58-95. | MR | Zbl
[56] “Sur le théorème de finitude de la cohomologie -adique d’une variété affine non singulière”, Amer. J. Math. 119 (1997), no. 5, p. 1027-1081. | MR | Zbl
-[57] “Zero cycles on algebraic varieties in nonzero characteristic : Roĭtman's theorem”, Compositio Math. 47 (1982), no. 3, p. 271-287. | Numdam | MR | Zbl
-[58] “Formal cohomology I”, Ann. of Math. 88 (1968), p. 181-217. | MR | Zbl
& -[59] “Improvements of the Chevalley-Warning and the Ax-Katz theorems”, Amer. J. Math. 117 (1995), no. 1, p. 241-244. | MR | Zbl
& -[60] “On the fundamental group of a unirational -fold”, Invent. Math. 44 (1978), no. 1, p. 75-86. | MR | Zbl
-[61] “Classes de Chern et classes de cycles en cohomologie rigide”, Bull. Soc. Math. France 131 (2003), p. 59-121. | Numdam | MR | Zbl
-[62] “The torsion of the group of -cycles modulo rational equivalence”, Ann. of Math. 111 (1980), no. 3, p. 553-569. | MR | Zbl
-[63] “The canonical lift of an ordinary elliptic curve over a finite field and its point counting”, J. Ramanujan Math. Soc. 15 (2000), no. 4, p. 247-270. | MR | Zbl
-[64] “On the fundamental group of a unirational variety”, J. London Math. Soc. 34 (1959), p. 481-484. | MR | Zbl
-[65] “Fano threefolds in positive characteristic”, Compositio Math. 105 (1997), no. 3, p. 237-265. | MR | Zbl
-[66] “An example of unirational surface in characteristic ”, Math. Ann. 211 (1974), p. 233-236. | MR | Zbl
-[67] “Cohomological descent of rigid cohomology for proper coverings”, Invent. Math. 151 (2003), no. 1, p. 101-133. | MR | Zbl
-[68] “A Chevalley-Warning approach to -adic estimates of character sums”, Proc. Amer. Math. Soc. 123 (1995), no. 1, p. 45-54. | MR | Zbl
-[69] “Bemerkung zur vorstehenden Arbeit von Herr Chevalley”, Abh. Math. Sem. Univ. Hamburg 11 (1936), p. 76-83. | JFM | Zbl
-[70] “Number of solutions of equations in finite fields”, Bull. Amer. Math. Soc. 55 (1949), p. 397-508. | MR | Zbl
-