Harmonic functions on loop groups
Séminaire Bourbaki : volume 1997/98, exposés 835-849, Astérisque, no. 252 (1998), Exposé no. 846, 16 p.
@incollection{SB_1997-1998__40__271_0,
     author = {Gross, Leonard},
     title = {Harmonic functions on loop groups},
     booktitle = {S\'eminaire Bourbaki : volume 1997/98, expos\'es 835-849},
     series = {Ast\'erisque},
     note = {talk:846},
     pages = {271--286},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {252},
     year = {1998},
     mrnumber = {1685636},
     zbl = {0931.58020},
     language = {en},
     url = {http://www.numdam.org/item/SB_1997-1998__40__271_0/}
}
TY  - CHAP
AU  - Gross, Leonard
TI  - Harmonic functions on loop groups
BT  - Séminaire Bourbaki : volume 1997/98, exposés 835-849
AU  - Collectif
T3  - Astérisque
N1  - talk:846
PY  - 1998
SP  - 271
EP  - 286
IS  - 252
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/SB_1997-1998__40__271_0/
LA  - en
ID  - SB_1997-1998__40__271_0
ER  - 
%0 Book Section
%A Gross, Leonard
%T Harmonic functions on loop groups
%B Séminaire Bourbaki : volume 1997/98, exposés 835-849
%A Collectif
%S Astérisque
%Z talk:846
%D 1998
%P 271-286
%N 252
%I Société mathématique de France
%U http://www.numdam.org/item/SB_1997-1998__40__271_0/
%G en
%F SB_1997-1998__40__271_0
Gross, Leonard. Harmonic functions on loop groups, dans Séminaire Bourbaki : volume 1997/98, exposés 835-849, Astérisque, no. 252 (1998), Exposé no. 846, 16 p. http://www.numdam.org/item/SB_1997-1998__40__271_0/

[1] Shigeki Aida, On the Ornstein-Uhlenbeck operators on Wiener-Riemannian manifolds, J. Funct. Anal. 116 (1993), no. 1, 83-110. | DOI | MR | Zbl

[2] _, Gradient estimates of harmonic functions and the asymptotics of spectral gaps on path spaces, Interdiscip. Inform. Sci. 2 (1996), no. 1, 75-84. | MR | Zbl

[3] _, Logarithmic Sobolev inequalities on loop spaces over compact Riemannian manifolds, Stochastic analysis and applications (Powys, 1995), World Sci. Publishing, River Edge, NJ, 1996, 1-19. | MR | Zbl

[4] Shigeki Aida and David Elworthy, Differential calculus on path and loop spaces. I. Logarithmic Sobolev inequalities on path spaces, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 1, 97-102. | MR | Zbl

[5] Hélène Airault and Paul Malliavin, Intégration géométrique sur l'espace de Wiener, Bull. Sci. Math. (2) 112 (1988), 3-52 | MR | Zbl

[6] _, Integration by parts formulas and dilatation vector fields on elliptic probability spaces, Probab. Theory Related Fields 106 (1996), no. 4, 447-494. | DOI | MR | Zbl

[7] Sergio Albeverio, Rémi Léandre, and Michael Röckner, Construction of a rotational invariant diffusion on the free loop space, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 3, 287-292. | MR | Zbl

[8] J.M. Bismut, Large deviations and the Malliavin calculus, Birkhäuser, Boston, 1984. | MR | Zbl

[9] J. Brüning And M. Lesch, Hilbert complexes, J. of Funct. Anal. 108 (1992), 88- 132. | DOI | MR | Zbl

[10] R. H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math. Soc. 2 (1951), 914-924. | DOI | MR | Zbl

[11] Mireille Capitaine, Elton P. Hsu, and Michel Ledoux, Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces, Electron. Comm. Probab. 2 (1997), 71-81 (electronic). | DOI | EuDML | MR | Zbl

[12] Ana Bela Cruzeiro and Paul Malliavin, Repère mobile et géométrie riemanienne sur les espaces des chemins, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 8, 859-864. | MR | Zbl

[13] _, Courbures de l'espace de probabilités d'un mouvement brownien riemannien, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 5, 603-607. | MR | Zbl

[14] _, Renormalized differential geometry on path space: structural equation, curvature, J. Funct. Anal. 139 (1996), no. 1, 119-181. | DOI | MR | Zbl

[15] B. K. Driver, The non-equivalence of Dirichlet forms on path spaces, Stochastic analysis on infinite-dimensional spaces (Baton Rouge, LA, 1994), Pitman Res. Notes Math. Ser., vol. 310, Longman Sci. Tech., Harlow (1994), 75-87. | MR | Zbl

[16] _, A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold, J. Funct. Anal. 110 (1992), no. 2, 272-376. | DOI | MR | Zbl

[17] _, A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold, Trans. of Amer. Math. Soc., 342 (1994), 375-395. | DOI | MR | Zbl

[18] _, Towards calculus and geometry on path spaces, Stochastic analysis (Ithaca, NY, 1993), Proc. Sympos. Pure Math., vol. 57, Amer. Math. Soc., Providence, RI (1995), 405-422. | MR | Zbl

[19] _, On the Kakutani-Itô-Segal-Gross and the Segal-Bargmann-Hall isomorphisms, J. of Funct. Anal. 133 (1995), 69-128 | DOI | MR | Zbl

[20] _, Integration by parts and quasi-invariance for heat kernel measures on loop groups, J. Funct. Anal. 149 (1997), no. 2, 470-547. | DOI | MR | Zbl

[21] _, Integration by parts for heat kernel measures revisited, J. Math. Pures Appl. (9) 76 (1997), no. 8, 703-737. | DOI | MR | Zbl

[22] _, A primer on Riemannian geometry and stochastic analysis on path spaces, ETH (Zürich, Switzerland) preprint series. This may be retrieved at http://math.ucsd.edu/~driver/prgsaps.html

[23] B. K. Driver and L. Gross, Hilbert spaces of holomorphic functions on complex Lie groups, in "New Trends in Stochastic Analysis" (Proceedings of the 1994 Taniguchi Symposium.), K. D. Elworthy, S. Kusuoka, I. Shigekawa, Eds. World Scientific, 1997, 76-106. | MR

[24] Bruce K. Driver and Terry Lohrenz, Logarithmic Sobolev inequalities for pinned loop groups, J. Funct. Anal. 140 (1996), no. 2, 381-448. | DOI | MR | Zbl

[25] Bruce K. Driver RöcknerMichael Röckner, Construction of diffusions on path and loop spaces of compact Riemannian manifolds, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 5, 603-608. | MR | Zbl

[26] K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Math. Soc. Lecture Note Series 70, Cambridge Univ. Press, Cambridge, England, 1982. | MR | Zbl

[27] K. D. Elworthy and Zhi-Ming Ma, Admissible vector fields and related diffusions on finite-dimensional manifolds, Ukraïn. Mat. Zh. 49 (1997), no. 3, 410-423. | MR | Zbl

[28] K. David Elworthy, Yves Le Jan, and Xue-Mei Li, Integration by parts formulae for degenerate diffusion measures on path spaces and diffeomorphism groups, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 8, 921-926. | MR | Zbl

[29] Ognian Enchev and Daniel W. Stroock, Towards a Riemannian geometry on the path space over a Riemannian manifold, J. Funct. Anal. 134 (1995), no. 2, 392- 416. | DOI | MR | Zbl

[30] _, Integration by parts for pinned Brownian motion, Math. Res. Lett. 2 (1995), no. 2, 161-169. | DOI | MR | Zbl

[31] Shi Zan Fang, Inégalité du type de Poincaré sur l'espace des chemins riemanniens, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 3, 257-260. | MR | Zbl

[32] Shizan Fang, Rotations et quasi-invariance sur l'espace des chemins, Potential Anal. 4 (1995), no. 1, 67-77. | DOI | MR | Zbl

[33] Shizan Fang and Jacques Franchi, Platitude de la structure riemannienne sur le groupe des chemins et identité d'énergie pour les intégrales stochastiques, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 10, 1371-1376. | MR | Zbl

[34] _, De Rham-Hodge-Kodaira operator on loop groups, J. Funct. Anal. 148 (1997), no. 2, 391-407. | DOI | MR | Zbl

[35] _, A differentiable isomorphism between Wiener space and path group, Séminaire de Probabilités, XXXI, Lecture Notes in Math., vol. 1655, Springer, Berlin (1997), 54-61. | Numdam | Zbl

[36] Shi Zan Fang and Paul Malliavin, Stochastic analysis on the path space of a Riemannian manifold. I. Markovian stochastic calculus, J. Funct. Anal. 118 (1993), no. 1, 249-274. | DOI | MR | Zbl

[37] E. Getzler, Dirichlet forms on loop space, Bull. Sc. math. 2e serie 113 (1989), 151-174. | MR | Zbl

[38] _, An extension of Gross's log-Sobolev inequality for the loop space of a compact Lie group in Proc. Conf. on Probability Models in Mathematical Physics, Colorado Springs, 1990 (G. J. Morrow and W-S. Yang, Eds.), World Scientific, N.J. (1991), 73-97.

[39] M. Gordina, Holomorphic functions and the heat kernel measure on an infinite dimensional complex orthogonal group. J. of Potential Analysis, To appear. | MR | Zbl

[40] L. Gross, Logarithmic Sobolev inequalities on Lie groups, Illinois J. Math. 36 (1992), 447-490. | MR | Zbl

[41] _, Logarithmic Sobolev inequalities on loop groups, J. of Funct. Anal. 102 (1992), 268-313. | MR | Zbl

[42] _, Uniqueness of ground states for Schrödinger operators over loop groups, J. of Funct. Anal. 112 (1993), 373-441. | DOI | MR | Zbl

[43] _, The homogeneous chaos over compact Lie groups, in "Stochastic Processes, A Festschrift in Honor of Gopinath Kallianpur", (S. Cambanis et al., Eds.), Springer-Verlag, New York (1993), 117-123. | MR | Zbl

[44] _, Harmonic analysis for the heat kernel measure on compact homogeneous spaces, in "Stochastic Analysis on Infinite Dimensional Spaces" (Kunita and Kuo, Eds.), Longman House, Essex England (1994), 99-110. | MR | Zbl

[45] _, Analysis on loop groups, in "Stochastic Analysis and Applications in Physics" A. I. Cardoso et al, Eds. (NATO ASI Series), Kluwer Acad. Publ. 1994, 99-118. | MR

[46] _, A local Peter-Weyl theorem, Trans. Amer. Math. Soc. To appear. | Zbl

[47] _, Some norms on universal enveloping algebras, Canadian J. of Mathematics. 50 (2) (1998), 356-377. | DOI | MR | Zbl

[48] L. Gross and P. Malliavin, Hall's transform and the Segal-Bargmann map, in "Ito's Stochastic calculus and Probability Theory", (Ikeda, Watanabe, Fukushima, Kunita, Eds.) Springer-Verlag, Tokyo, Berlin, New York (1996), 73-116. | MR | Zbl

[49] B. Hall, The Segal-Bargmann "coherent state" transform for compact Lie groups, J. of Funct. Anal. 122 (1994), 103-151. | DOI | MR | Zbl

[50] _, The inverse Segal-Bargmann transform for compact Lie groups, J. of Funct. Anal. 143 (1997), 98-116. | DOI | MR | Zbl

[51] Omar Hijab, Hermite functions on compact lie groups I., J. of Func. Anal. 125 (1994), 480-492. | DOI | MR | Zbl

[52] _, Hermite functions on compact lie groups II., J. of Funct. Anal. 133 (1995), 41-49. | DOI | MR | Zbl

[53] Elton P. Hsu, Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold, J. Funct. Anal. 134 (1995), no. 2, 417-450. | DOI | MR | Zbl

[54] _, Flows and quasi-invariance of the Wiener measure on path spaces, Stochastic analysis (Ithaca, NY, 1993), Proc. Sympos. Pure Math., vol. 57, Amer. Math. Soc., Providence, RI (1995), 265-279. | MR | Zbl

[55] _, Inégalités de Sobolev logarithmiques sur un espace de chemins, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 8, 1009-1012. | MR | Zbl

[56] _, Integration by parts in loop spaces, Math. Ann. 309 (1997), no. 2, 331- 339. | DOI | MR | Zbl

[57] _, Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds, Comm. Math. Phys. 189 (1997), no. 1, 9-16. | DOI | MR | Zbl

[58] _, Stochastic Analysis on Manifolds, in the series Graduate Studies in Mathematics, American Mathematical Society, 1999.

[59] R. Léandre and J. R. Norris, Integration by parts and Cameron-Martin formulas for the free path space of a compact Riemannian manifold, Séminaire de Probabilités, XXXI, Lecture Notes in Math., vol. 1655, Springer, Berlin (1997), 16-23. | EuDML | Numdam | MR | Zbl

[60] T. J. Lyons and Z. M. Qian, A class of vector fields on path spaces, J. Funct. Anal. 145 (1997), no. 1, 205-223. | DOI | MR | Zbl

[61] Paul Malliavin, Infinite-dimensional analysis, Bull. Sci. Math. (2) 117 (1993), no. 1, 63-90. | MR | Zbl

[62] _, Stochastic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 313, Springer-Verlag, Berlin, 1997. | MR | Zbl

[63] M.-P. Malliavin and P. Malliavin, Integration on loop groups. I. Quasi-invariant measures, J. of Funct. Anal. 93 (1990), 207-237 | DOI | MR | Zbl

[64] H. P. Mckean, Jr., Stochastic Integrals, Academic Press, NY, 1969. | MR | Zbl

[65] Jeffrey Mitchell, Short time behavior of Hermite functions on compact Lie groups, Cornell Ph. D. Thesis, August, 1998. | MR | Zbl

[66] J. R. Norris, Twisted sheets, J. Funct. Anal. 132 (1995), no. 2, 273-334. | DOI | MR | Zbl

[67] I. Shigekawa, Transformations of the Brownian motion on the Lie group, in "Proceedings, Taniguchi International Symposium on Stochastic Analysis, Katata and Kyoto, 1982" (Kiyosi Itô, Ed.), 409-422, North-Holland, Amsterdam, 1984. | MR | Zbl

[68] Daniel Stroock, Some thoughts about Riemannian structures on path space, Gaz. Math. (1996), no. 68, 31-45. | MR

[69] _, Gaussian measures in traditional and not so traditional settings, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no. 2, 135-155. | DOI | MR | Zbl

[70] D. W. Stroock and O. Zeitouni, Variations on a theme by Bismut, Astérisque (1996), no. 236, 291-301, Hommage à P.-A. Meyer et J. Neveu. | Numdam | MR | Zbl

[71] A. S. Üstünel, An Introduction to Analysis on Wiener Space, Lecture Notes in Mathematics, 1610, Springer-Verlag, 1995. | MR | Zbl

[72] _, Stochastic Analysis on Lie groups, in "Progress in probability", vol.42 Birkhauser, 1997.

[73] N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, 100. Cambridge Univ. Press, Cambridge, 1992, 156 p. | MR | Zbl

[74] Fengyu Wang, Logarithmic Sobolev inequalities for diffusion processes with application to path space, Chinese J. Appl. Probab. Statist. 12 (1996), no. 3, 255-264. | MR | Zbl

[75] Norbert Wiener, Differential-space, J. of Math. and Phys. 2 (1923), 131-174. | DOI