Le problème de Torelli
Séminaire Bourbaki : volume 1985/86, exposés 651-668, Astérisque, no. 145-146 (1987), Exposé no. 651, 14 p.
@incollection{SB_1985-1986__28__7_0,
     author = {Beauville, Arnaud},
     title = {Le probl\`eme de {Torelli}},
     booktitle = {S\'eminaire Bourbaki : volume 1985/86, expos\'es 651-668},
     series = {Ast\'erisque},
     note = {talk:651},
     pages = {7--20},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {145-146},
     year = {1987},
     mrnumber = {880023},
     zbl = {0621.14012},
     language = {fr},
     url = {http://www.numdam.org/item/SB_1985-1986__28__7_0/}
}
TY  - CHAP
AU  - Beauville, Arnaud
TI  - Le problème de Torelli
BT  - Séminaire Bourbaki : volume 1985/86, exposés 651-668
AU  - Collectif
T3  - Astérisque
N1  - talk:651
PY  - 1987
SP  - 7
EP  - 20
IS  - 145-146
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/SB_1985-1986__28__7_0/
LA  - fr
ID  - SB_1985-1986__28__7_0
ER  - 
%0 Book Section
%A Beauville, Arnaud
%T Le problème de Torelli
%B Séminaire Bourbaki : volume 1985/86, exposés 651-668
%A Collectif
%S Astérisque
%Z talk:651
%D 1987
%P 7-20
%N 145-146
%I Société mathématique de France
%U http://www.numdam.org/item/SB_1985-1986__28__7_0/
%G fr
%F SB_1985-1986__28__7_0
Beauville, Arnaud. Le problème de Torelli, dans Séminaire Bourbaki : volume 1985/86, exposés 651-668, Astérisque, no. 145-146 (1987), Exposé no. 651, 14 p. http://www.numdam.org/item/SB_1985-1986__28__7_0/

[A] A. Andreotti - On a theorem of Torelli, Amer. J. of Math. 80 (1958), 801-821. | MR | Zbl

[B 1] A. Beauville - Les singularités du diviseur Θ de la jacobienne intermédiaire de l'hypersurface cubique dans P4 , Algebraic Threefolds, Springer-Verlag Lect. Notes 947 (1982), 190-208. | Zbl

[B 2] A. Beauville - Surfaces K3, Exposé 609 au Séminaire Bourbaki (juin 1983) Astérisque 105-106 (1983), 217-229. | Numdam | MR | Zbl

[B-P-V] W. Barth, C. Peters, A. Van De Ven - Compact complex surfaces, Springer-Verlag, Heidelberg (1984). | MR | Zbl

[C 1] F. Catanese - The moduli and the global period mapping of surfaces with K2 = pg = 1 : a counterexample to the global Torelli problem, Compositio math. 41 (1980), 401-414. | Numdam | MR | Zbl

[C 2] F. Catanese - On the period map of surfaces with K2 = χ = 2 , Classification of algebraic and analytic manifolds (K. Ueno, editor). Progress in Math. 39, Birkhäuser (1983), 27-43. | Zbl

[C-D] F. Catanese, O. Debarre - Surfaces with K2 = 2 , pg = 1 , q = 0 , à paraître. | Zbl

[C-G] J. Carlson, P. Griffiths - Infinitesimal variations of Hodge structure and the global Torelli problem, Journées de géométrie algébrique d'Angers, Sijthoff and Nordhoff (1980), 51-76. | MR | Zbl

[Ch 1 ] K. Chakiris - Counterexamples to global Torelli for certain simply-connected surfaces, Bull. Amer. Math. Soc. 2 (1980), 297-299. | MR | Zbl

[Ch 2] K. Chakiris - The Torelli problem for elliptic pencils, Topics in transcendental algebraic geometry (P. Griffiths, editor), Annals of Math. Studies 106, Princeton University Press (1984), 157-181. | MR | Zbl

[Ci] C. Ciliberto - On a proof of Torelli's theorem, Algebraic geometry - open problems, Springer-Verlag, Lect. Notes 997 (1983), 113-123. | MR | Zbl

[C1-G] H. Clemens, P. Griffiths - The intermediate Jacobian of the cubic threefold, Ann. of Math. 95 (1972), 218-356. | MR | Zbl

[Co] A. Comessatti - Sulle trasformazioni hermitiane delle varietà di Jacobi, Atti R. Accad. Sci. Torino, 50 (1914-15), 439-455. | JFM

[Co-D] D. Cox, R. Donagi - On the failure of variational Torelli for regular elliptic surfaces with a section, à paraître. | Zbl

[D] O. Debarre - Sur la démonstration de A. Weil du théorème de Torelli pour les courbes, Compositio math. 58 (1986), 3-11. | Numdam | MR | Zbl

[De] P. Deligne - Travaux de Griffiths, Exposé 376 du Séminaire Bourbaki (juin 1970), Springer-Verlag, Lect. Notes 180 (1971). | Numdam | Zbl

[Do 1] R. Donagi - Generic Torelli for projective hypersurfaces, Compositio Math. 50 (1983), 325-353. | Numdam | MR | Zbl

[Do 2] R. Donagi - Generic Torelli and variational Schottky, Topics in transcendental algebraic geometry (P. Griffiths, editor), Annals of Math. Studies 106, Princeton University Press (1984), 239-258. | MR | Zbl

[Do-G] R. Donagi, M. Green - A new proof of the symmetrizer lemma and a stronger weak Torelli theorem for projective hypersurfaces, J. of Diff. Geometry 20(1984), 459-461. | MR | Zbl

[F] H. Flenner - The infinitesimal Torelli problem for zero sets of sections of vector bundles, à paraître. | Zbl

[F-S] R. Friedman, R. Smith - Degenerations of Phym varieties and intersections of three quadrics, à paraître. | Zbl

[G 1 ] M. Green - Quadrics of rank four in the ideal of a canonical curve, Inventiones math. 75 (1984), 85-104. | MR | Zbl

[G 2] M. Green - Koszul cohomology of projective varieties, J. of Diff. Geometry 19 (1984), 125-171. | MR | Zbl

[G 3] M. Green - The period map for hypersurfaces sections of high degree of an arbitrary variety, Compositio math. 55 (1984), 135-156. | Numdam | MR | Zbl

[Gr 1 ] P. Griffiths - Periods of integrals on algebraic manifolds, I et II, Amer. J. of Math. 40 (1968), 568-626 et 805-865. | Zbl

[Gr 2] P. Griffiths - On the periods of certain rational integrals, I et II, Ann. of Math. 90 (1969), 460-541. | MR | Zbl

[G-H] P. Griffiths, J. Harris - Principles of algebraic geometry, J. Wiley and sons (1978). | MR | Zbl

[H] E. Horikawa - On the periods of Enriques surfaces, I et II, Math. Annalen 234 (1978), 73-108 et 235 (1978), 217-246. | MR | Zbl

[K] J. Kiĭ - The local Torelli theorem for varieties with divisible canonical class, Math. USSR Izvestija 12 (1978), 53-67. | Zbl

[Ky] V. Kynev - Un exemple de surface simplement connexe de type général pour laquelle le théorème de Torelli local n'est pas satisfait (en russe), C.R. Ac. Bulg. Sci. 30 (1977), 323-325. | MR | Zbl

[L-P-W] D. Liebermann, C. Peters, R. Wilsker - A theorem of local Torelli type, Math. Annalen 231 (1977), 39-45. | MR | Zbl

[M] H. Martens - A new proof of Torelli's theorem, Ann. of Math. 78 (1963), 107-111. | MR | Zbl

[Ma] T. Matsusaka - On a theorem of Torelli, Amer. J. of Math. 80 (1958), 784-800. | MR | Zbl

[Me] J-Y. Merindol - Théorème de Torelli affine pour les intersections de deux quadriques, Inventiones math. 80 (1985), 375-416. | MR | Zbl

[N] Y. Namikawa - Periods of Enriques surfaces, Math. Annalen 270 (1985), 201-222. | MR | Zbl

[O-S] F. Oort, J. Steenbrink - On the local Torelli problem for algebraic curves, Journées de géométrie algébrique d'Angers, Sijthoff and Noordhoff (1980), 157-204. | MR | Zbl

[R] M. Reid - The complete intersection of two or more quadrics, Thesis, Cambridge (1972).

[S] M. Saito - Weak global Torelli theorem for certain weighted projective hypersurfaces, à paraître au Duke J. of math. | Zbl

[S-D] B. Saint-Donat - Variétés de translation et théorème de Torelli, C.R. Ac. Sci. Paris, Série A 280 (1975), 1611-1612. | MR | Zbl

[Tj 1] A. Tjurin - The geometry of the Fano surface of a nonsingular cubic F ⊂ P4 and Torelli theorems for Fano surfaces and cubics, Math. USSR Izvestija 5 (1971), 517-546. | Zbl

[Tj 2] A. Tjurin - On intersections of quadrics, Russian Math. Surveys 30 (1975), 51-105. | MR | Zbl

[T 1] A. Todorov - Surfaces of general type with pg = 1 and K2 = 1 , Ann. Sci. Ec. Norm. Sup. 13 (1980), 1-21. | Numdam | MR | Zbl

[T 2] A. Todorov - A construction of surfaces with pg = 1 , q = 0 and 2 ≦ K2 ≦ 8 , counterexamples of the global Torelli theorem, Inventiones math. 63, (1981), 287-304. | Zbl

[To] R. Torelli - Sulle varietà di Jacobi, Rend. Acc. Lincei (5) 22 (1914), 98-103. | JFM

[U 1] S. Usui - Local Torelli theorem for some nonsingular weighted complete intersections, Proc. of the Inter. Symposium on algebraic geometry, Kinokuniya, Tokyo (1978), 723-734. | MR | Zbl

[U 2] S. Usui - Period map of surfaces with pg = c21 = 1 and K ample, Mem. Fac. Sci. Kochi Univ. ser. A, 2 (1981), 37-73. | MR | Zbl

[U 3] S. Usui - Variation of mixed Hodge structures arising from family of logarithmic deformations, Ann. scient. Ec. Norm. Sup. 16 (1983), 91-107. | Numdam | MR | Zbl

[V] C. Voisin - Le théorème de Torelli pour les hypersurfaces cubiques dans P5 , à paraître à Inventiones math.

[W] A. Weil - Zum Beweis des Torellischen Satzes, Nachr. Akad. Wiss. Göttingen Math. Phys. K1 IIa (1957) 33-53. | MR | Zbl