SÉMINAIRE N. BOURBAKI

PIERRE CARTIER

Théorie de la diffusion pour l'équation de Schrödinger

Séminaire N. Bourbaki, 1980, exp. nº 533, p. 132-150

http://www.numdam.org/item?id=SB_1978-1979_21_132_0

© Association des collaborateurs de Nicolas Bourbaki, 1980, tous droits réservés.

L'accès aux archives du séminaire Bourbaki (http://www.bourbaki. ens.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

533-01

Février 1979

THÉORIE DE LA DIFFUSION POUR L'ÉQUATION DE SCHRÖDINGER

par Pierre CARTIER

§ 1. Enoncé des problèmes [2], [4]

1. Rappelons que l'équation de Schrödinger s'écrit sous la forme

(1)
$$i\hbar \partial \vec{p}_{t}/\partial t = -(\hbar^{2}/2m)\Delta \vec{p}_{t} + V\vec{p}_{t}$$

où $\Phi_{\mathbf{t}}(\mathbf{x}) = \Phi(\mathbf{x},\mathbf{t})$ est une fonction du vecteur \mathbf{x} de l'espace euclidien \mathbf{R}^3 et du temps \mathbf{t} , \mathbf{n} est la constante de Planck divisée par 2π , et \mathbf{m} est la masse d'une particle se déplaçant sous l'influence d'un potentiel $V(\mathbf{x})$. Nous simplifierons les notations en utilisant un système d'unités dans lequel on a $\mathbf{n} = 1$ et $\mathbf{m} = 1/2$. On considérera de manière générale l'équation aux dérivées partielles suivante dans \mathbf{R}^n :

(2)
$$i \partial \phi_{t} / \delta t = - \Delta \phi_{t} + v \phi_{t} ,$$

où V est une fonction localement de carré intégrable dans \mathbb{R}^n , et où $\Delta = \sum_{j=1}^n (\partial/\partial_{x_j})^2$ est l'opérateur de Laplace.

2. Le premier problème concerne l'existence et l'unicité des solutions de l'équation (2). Vu les principes fondamentaux de la Mécanique Quantique, on peut le formuler de la manière suivante :

PROBLÈME I : Trouver un opérateur auto-adjoint H , borné inférieurement dans l'espace de Hilbert $\underline{H} = L^2(\underline{\underline{R}}^n)$, dont le domaine $\underline{D}(\underline{H})$ contienne l'espace $C_o^{\infty}(\underline{\underline{R}}^n)$ et tel que

(3)
$$H\vec{\phi} = -\Delta \phi + V \phi \qquad \underline{\text{pour toute}} \quad \phi \quad \underline{\text{dans}} \quad C_o^{co} \left(\underline{\underline{R}}^n\right).$$

On a noté $C_0^\infty(\frac{R^n}{=})$ l'espace des fonctions de classe C^∞ à support compact sur $\frac{R^n}{=}$. Pour qu'il existe un opérateur auto-adjoint satisfaisant à (3), il faut et il suffit que la fonction V soit réelle, ce que nous supposerons désormais.

Nous n'aborderons pas sérieusement le problème I , qui mériterait un exposé à lui tout seul . Nous renverrons à l'ouvrage de M.Reed et B.Simon [6, vol.II] , à l'exposé de B.Simon dans [8] , ou encore , pour un résultat très général , à un travail récent de Brézis et Kato [33] .

Une méthode pour définir la somme de deux opérateurs non bornés est fournie par le

critère suivant , dû à Rellich et Kato [4] :

Soit H_0 un opérateur auto-adjoint de domaine $D(H_0)$, borné inférieurement dans l'espace de Hilbert H. Soit $V:D(H_0) \longrightarrow H$ une application linéaire symétrique (i.e. on a (f|Vg) = (Vf|g) pour f,g dans $D(H_0)$). On suppose qu'il existe un nombre complexe z tel que la résolvante $R_0(z) = (H_0 - z)^{-1}$ soit définie et que l'application $VR_0(z)$ soit un opérateur compact dans H. Alors $H = H_0 + V$, de domaine $D(H) = D(H_0)$, est auto-adjoint et borné inférieurement .

L'opérateur $-\Delta$ agissant sur $C_o^\infty(\underline{\mathbb{R}}^n)$ a un unique prolongement auto-adjoint H_o , dont le domaine se compose des fonctions Φ dans $L^2(\underline{\mathbb{R}}^n)$ telles que le laplacien $\Delta \Phi$ calculé au sens des distributions appartienne à $L^2(\underline{\mathbb{R}}^n)$; on a $H_o \Phi = -\Delta \Phi$ en ce sens. La transformée de Fourier \hat{f} (notée aussi $\underline{F}f$) d'une fonction (intégrable) f est définie par la formule

(4)
$$\hat{f}(\xi) = (2\pi)^{-n/2} \int f(x) e^{-ix \cdot \xi} d^n x$$
;

on note $\mathbf{x}=(\mathbf{x}_1,\dots,\mathbf{x}_n)$ et $\mathbf{\hat{\xi}}=(\mathbf{\hat{\xi}}_1,\dots,\mathbf{\hat{\xi}}_n)$ deux vecteurs de $\underline{\mathbb{R}}^n$, $\mathbf{x}.\mathbf{\hat{\xi}}=\sum\limits_{j=1}^n\mathbf{x}_j\mathbf{\hat{\xi}}_j$ est leur produit scalaire et $\mathbf{d}^n\mathbf{x}=\mathbf{d}\mathbf{x}_1...\mathbf{d}\mathbf{x}_n$. La norme $|\mathbf{x}|$ d'un vecteur \mathbf{x} étant comme d'habitude $(\mathbf{x}.\mathbf{x})^{1/2}$, le domaine de \mathbf{H}_0 se compose des fonctions \mathbf{f} dans $\mathbf{L}^2(\underline{\mathbf{R}}^n)$ telles que $\mathbf{\hat{\xi}}\mapsto |\mathbf{\hat{\xi}}|^2\mathbf{\hat{f}}(\mathbf{\hat{\xi}})$ appartienne à $\mathbf{L}^2(\underline{\mathbf{R}}^n)$, et l'on a

(5)
$$(\widehat{\mathbf{H}}_{\mathbf{f}})(\mathbf{\xi}) = |\mathbf{\xi}|^2 \widehat{\mathbf{f}}(\mathbf{\xi})$$

On appelle potentiel de Kato toute fonction V qui est limite uniforme d'une suite de fonctions V_m de $L^2(\underline{\mathbb{R}}^n)$; par exemple, la fonction $V(x) = C \cdot |x|^{-8}$ avec $0 < s < \frac{n}{2}$ est un potentiel de Kato. Supposons d'abord V de carré intégrable; alors l'opérateur $A = V \cdot (H_1 + 1)^{-1}$ est un opérateur "pseudo-différentiel" de la forme

(6)
$$Af(x) = (2\pi)^{-n/2} \int e^{ix \cdot \xi} A(x; \xi) f(\xi) d^n \xi$$

avec le "noyau" $A(x; \hat{\xi}) = V(x) \cdot (|\hat{\xi}|^2 + 1)^{-1} \cdot \underline{\text{Supposons}}$ n = 3; la fonction précédente est de carré intégrable sur $\underline{R}^3 > \underline{R}^3$, donc l'opérateur A est de Hilbert-Schmidt. Dans le cas d'un potentiel de Kato $V = \lim_{m \to \infty} V_m$, l'opérateur $V \cdot (H_0 + 1)^{-1}$ est limite en norme des opérateurs de Hilbert-Schmidt $V_m \cdot (H_0 + 1)^{-1}$, donc est compact.

En conclusion , <u>lorsque</u> n = 3 <u>et que</u> V <u>est un potentiel de Kato</u> , <u>l'opérateur</u> H = H o + V <u>de domaine</u> $\underline{D}(H_0)$ <u>est auto-adjoint et borné inférieurement</u> . <u>Ceci s'applique en particulier au potentiel coulombien</u> $V(x) = C \cdot |x|^{-1}$.

3. Supposons résolu le problème I . D'après le théorème de Stone , on peut définir deux groupes à un paramètre d'opérateurs unitaires dans \underline{H} par

$$(7) U_{+} = e^{-itH} , U_{+}^{O} = e^{-itHO}$$

L'équation de Schrödinger (2) est alors résolue par la formule

$$\overline{\Phi}_{+} = \overline{U}_{+}\overline{\Phi}_{C}$$

De même , l'équation de Schrödinger pour la particule libre , soit

(2 bis)
$$i \partial \overline{\phi}_{+} / \partial t = - \Delta \overline{\phi}_{+}$$

est résolue par la formule

$$(9) \qquad \qquad \overline{\Phi}_{t} = U_{t}^{o} \, \overline{\Phi}_{0}$$

En général, on ne connaît pas de formule explicite pour U_t . Pour U_t^0 , on a par contre

(10)
$$\widehat{(\mathbb{U}_{t}^{\circ}f)}(\xi) = e^{-it|\xi|^{2}} \widehat{f}(\xi) \qquad \text{pour } f \text{ dans } L^{2}(\underline{\mathbb{R}}^{n})$$

(11)
$$(U_t^0 f)(x) = \int K_t(x - y)f(y) d^n y \quad \text{pour } f \text{ dans } L^1 \cap L^2,$$

avec le "propagateur"

(12)
$$K_{+}(x) = |4\pi t|^{-n/2} e^{-\pi i (n/4) \cdot sgn t} e^{i|x|^{2}/4t}$$

4. Une fois construit l'opérateur auto-adjoint H , on peut définir son <u>spectre</u> $\sigma(H)$, le <u>spectre discret</u> $\sigma_d(H)$ formé des valeurs propres isolées de multiplicité finie , et le <u>spectre essentiel</u> $\sigma_e(H) = \sigma(H) \setminus \sigma_d(H)$.

PROBLÈME II : Montrer que le spectre essentiel de H se compose des nombres positifs .

On prouve facilement l'égalité

(13)
$$\mathbf{\sigma}(\mathbf{H}_{\mathbf{o}}) = \mathbf{\sigma}_{\mathbf{e}}(\mathbf{H}_{\mathbf{o}}) = [0, +\infty[$$

de plus , dans le critère de Rellich et Kato , on peut prouver que H et $\frac{1}{0}$ ont $\frac{1}{1}$ est donc résolu lorsque V est un potentiel de Kato et que l'on a n=3.

Lorsque H est borné inférieurement et que son spectre essentiel est égal à $[0, +\infty[$, le spectre discret de H est une partie finie de]- ∞ , 0[ou se compose des éléments d'une suite de nombres $\lambda_0 < \lambda_1 < \ldots < \lambda_n < \ldots < 0$ tendant vers 0. Pour l'étude du spectre discret , on renvoie à notre exposé précédent (Séminaire Bourbaki , février 1977 , exposé 496) .

5. Soit en général H un opérateur auto-adjoint dans un espace de Hilbert \underline{H} . On peut décomposer \underline{H} en somme directe orthogonale

$$\frac{\mathbf{H}}{\mathbf{E}} = \frac{\mathbf{H}}{\mathbf{p}} \bullet \frac{\mathbf{H}}{\mathbf{ac}} \bullet \frac{\mathbf{H}}{\mathbf{sc}}$$

avec les propriétés suivantes :

- a) l'espace \underline{H} est engendré par les vecteurs propres de \underline{H} dans $\underline{\underline{H}}$;
- b) soient E(A) les projecteurs spectraux de H et m_f (pour $f \in \underline{H}$) les mesures spectrales définies par $m_f(A) = ||E(A).f||^2$; alors, si f est décomposé sous la forme $f = f_p + f_{ac} + f_{sc}$ conformément à (14), la formule

 $\mathbf{m}_{\mathbf{f}} = \mathbf{m}_{\mathbf{f}} + \mathbf{m}_{\mathbf{f}} + \mathbf{m}_{\mathbf{f}}$ décrit la décomposition de Lebesgue de la mesure $\mathbf{m}_{\mathbf{f}}$ sur \mathbf{R} ; autrement dit , $\mathbf{m}_{\mathbf{f}}$ est somme de masses ponctuelles , $\mathbf{m}_{\mathbf{f}}$ est absolument continue par rapport à la mesure de Lebesgue et $\mathbf{m}_{\mathbf{f}}$ est diffuse et étrangère à ladite mesure de Lebesgue. Sc PROBLÈME III : a) Prouver que l'opérateur H n'a aucune valeur propre positive .

b) Prouver que la partie singulière H_{SC} est réduite à (0).

Le problème III a est encore assez mal compris ; on trouvera des renseignements à ce sujet dans le livre de Reed et Simon [6, vol. IV]. Les résultats dont on parlera plus loin permettent de résoudre le problème III b dans de nombreux cas. Une fois résolus les problèmes I, II et III, on peut écrire

(15)
$$\underline{\mathbf{H}}_{\mathbf{D}} = \mathbf{E}(]-\infty, \mathbf{O}[).\underline{\mathbf{H}}$$

(16)
$$\underline{\underline{H}}_{RC} = \mathbb{E}([0,+\infty[).\underline{\underline{H}}]$$

et les valeurs propres de $\,\mathrm{H}\,$ sont en nombre fini , ou forment une suite strictment croissante de nombres négatifs tendant vers $\,\mathrm{O}\,$.

6. La théorie de la diffusion s'occupe du comportement des solutions de l'équation de Schrödinger lorsque le temps t tend vers l'infini.

De manière générale , considérons un groupe à un paramètre d'opérateurs unitaires $U_{\mathbf{t}}$ dans l'espace de Hilbert $\underline{H} = \mathbf{L}^2(\underline{\mathbb{R}}^n)$; posons $U_{\mathbf{t}} = e^{-itH}$ (théorème de Stone) . Soit $\mathbf{\Phi} \neq 0$ dans \underline{H} , et soit $\mathbf{\Phi}_{\mathbf{t}} = U_{\mathbf{t}}\mathbf{\Phi}$ la solution de l'équation de Schrödinger

(17)
$$i \partial \phi_t / \partial t = H \phi_t$$

telle que $\Phi_0 = \Phi$. On définit une famille de mesures de probabilité μ_t sur \mathbf{R}^n par la formule

(18)
$$\mu_{t}(A) = ||\overline{Q}||^{-2} \int_{A} |\overline{Q}_{t}(x)|^{2} d^{n}x \qquad ;$$

le nombre $\psi_t(A)$ s'interprète comme la probabilité d'observer à l'instant t la particule dans la partie A de \underline{R}^n .

On dit que $\overline{\mathbb{Q}}$ est un état lié si les mesures μ_t appartiennent à un ensemble de mesures de probabilité compact pour la topologie vague . D'après un critère classique , ceci signifie que , pour tout $\epsilon > 0$, il existe une partie compacte K de $\underline{\mathbb{R}}^n$ telle que $\mu_t(\mathbb{K}) > 1 - \epsilon$ pour tout t . Il revient au même de supposer que l'on a

(19)
$$\lim_{r\to\infty} \sup_{t} || F_{r}U_{t}\overline{Q} || = 0 ,$$

où F_r est (l'opération de multiplication par) la fonction caractéristique de l'ensemble des x dans \underline{R}^n tels que |x|>r. On montre facilement que l'ensemble des états liés (y compris 0) est un sous-espace fermé $\underline{H}_{li\acute{e}}$ de \underline{H} . De plus , si $\overline{\Phi}$ est un vecteur propre de H, le vecteur $U_t\overline{\Phi}$ est proportionnel à $\overline{\Phi}$ et donc μ_t est indépendante de

t (\P est un "état stationnaire"), donc \P est un état lié. On a donc $\underline{\underline{H}}_p$ \subseteq $\underline{\underline{H}}_{li\acute{e}}$. On dit que \P est un état de diffusion si l'on a

(20)
$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \mu_{t}(A) dt = 0$$

pour toute partie bornée A de $\underline{\underline{R}}^n$. Ces états de diffusion (y compris 0) forment un sous-espace fermé $\underline{\underline{H}}_{diff}$ de $\underline{\underline{H}}$, orthogonal à $\underline{\underline{H}}_{li\acute{e}}$, donc contenu dans $\underline{\underline{H}}_{c} = \underline{\underline{H}}_{ac} \bullet \underline{\underline{H}}_{sc}$.

Ces définitions sont dues à Ruelle [42], et le critère suivant a été obtenu par Amrein et Georgescu [30] :

Supposons qu'il existe un opérateur borné T dans H, d'image dense, commutant aux U_t et tel que FT soit un opérateur compact pour toute fonction F de $C_o^{\infty}(\underline{R}^n)$. On a alors $\underline{H}_p = \underline{H}_{li\acute{e}}$, $\underline{H}_c = \underline{H}_{diff}$, et en particulier, on a $\underline{H} = \underline{H}_{li\acute{e}} \bullet \underline{H}_{diff}$.

Il suffit évidemment de prouver l'inclusion $\underline{\underline{H}}_{c} \in \underline{\underline{H}}_{diff}$. La démonstration est particulièrement simple lorsque $\underline{\underline{H}}_{sc}$ est réduit à $\{0\}$. En effet , de manière générale , on prouve comme suit la formule $\lim_{\substack{t \mid -\infty \\ \text{lorsque}}} \underline{\underline{h}}_{t}(A) = 0 , \text{ pour toute partie bornée } A \text{ de } \underline{\underline{R}}^{n}$ lorsque $\bar{\underline{\Phi}}$ appartient à $\underline{\underline{H}}_{sc}$. Il revient au même de prouver que l'on a

(21)
$$\lim_{|t| \to \infty} \int |F|^2 d\mu_t = 0 \quad \text{pour } F \text{ dans } C_o^{\infty}(\underline{\mathbb{R}}^n) ,$$

soit encore

(22)
$$\lim_{|t| \to \infty} || F.U_{t}^{0}|| = 0 \quad \text{pour } F \text{ dans } C_{0}^{\infty}(\underline{R}^{n}).$$

Comme $T\underline{H}_{ac}$ est dense dans \underline{H}_{ac} et $||U_t||=1$, on peut supposer que $\overline{\phi}$ est de la forme $T\overline{\Phi}'$ avec $\overline{\Phi}'$ dans \underline{H}_{ac} . C'est une conséquence connue du lemme de Riemann-Lebesgue que $U_t\overline{\Phi}'$ tend $\underline{faiblement}$ vers 0, et comme l'opérateur FT est compact, il en résulte que $FU_t\overline{\Phi}'$ = $FT(U_t\overline{\Phi}')$ tend $\underline{fortement}$ vers 0.

Le critère d'Amrein et Georgescu s'applique dans deux cas $({}^{\sharp})$:

- a) Les opérateurs U_t commutent aux translations dans \underline{R}^n (et en particulier si $H = H_0$).
- b) Le domaine $\underline{D}(H)$ contient toutes les fonctions \underline{f} de $\underline{L}^2(\underline{\underline{R}}^n)$ $\underline{\underline{\hat{a}}}$ support compact telles que $\underline{\Lambda}\underline{f}$ (au sens des distributions) appartienne $\underline{\hat{a}}$ $\underline{L}^2(\underline{\underline{R}}^n)$ et \underline{l} 'on \underline{a}

pour une telle fonction f (en particulier si V est un potentiel de Kato et si n=3).

Dans le cas a), il suffit de prendre $T=(H_0+1)^{-S}$ avec s>n/4, car FT est alors un opérateur pseudo-différentiel associé à un noyau de carré intégrable $(n^0\ 2)$.

^(*) On trouvera dans Ruelle [42] d'autres cas où l'on a $\frac{H}{P} = \frac{H}{li\acute{e}}$ et $\frac{H}{C} = \frac{H}{diff}$.

Dans le cas b), posons $T = (H + i)^{-1}$ et $T_0 = (H_0 - i)^{-1}$; on établit facilement la formule

(24)
$$\mathbf{T}^{\Xi} = \overline{\mathbf{F}}_{\mathbf{0}} - \mathbf{T}^{\Xi}(\mathbf{H}(\overline{\mathbf{F}})\mathbf{T}_{\mathbf{0}}) - 2\sum_{j=1}^{n} \mathbf{T}^{\Xi}(\mathbf{D}_{j}(\overline{\mathbf{F}}) \cdot \mathbf{D}_{j}\mathbf{T}_{\mathbf{0}})$$

On a posé $D_j = -i \frac{1}{2} / 0 x_j$ et la fonction F appartient à $C_0^{\infty} (\frac{R}{2}^n)$. Les opérateurs T^{∞} et T sont bornés ; chacun des opérateurs pseudo-différentiels $\overline{F}T$, $\overline{H(F)}.T$ et $D_{j}(\overline{F}).D_{j}T$ a un noyau $A(x;\xi) = B(x).C(\xi)$ où B et C sont nulles à l'infini, donc est d'opérateurs de Hilbert-Schmidt (voir les calculs du n° 2). Il en résulte que l'opérateur TF, donc aussi son adjoint FT, est compact. Il est clair que T est d'image dense et commute aux Ut .

7. Nous allons maintenant comparer les solutions des équations

(2)
$$i \partial \overline{Q}_{t} / \partial t = -\Delta \overline{Q}_{t} + V \overline{Q}_{t}$$

(2 bis)
$$i \delta \overline{Q}_t / \delta t = -\Delta \overline{Q}_t$$
.

On dira qu'un élément 🏚 de <u>H</u> est <u>asymptotiquement libre</u> si l'on peut lui associer deux éléments $\vec{\Phi}^{ ext{in}}$ et $\vec{\Phi}^{ ext{out}}$ de $\underline{ ext{H}}$, de sorte que l'on ait

(25)
$$\lim_{t\to +\infty} || \vec{\Phi}_t - \underline{\Phi}_t^{\text{out}}|| = \lim_{t\to -\infty} || \vec{\Phi}_t - \underline{\Phi}_t^{\text{in}}|| = 0.$$

On a noté Φ_t la solution de l'équation (2) telle que $\Phi_0 = \Phi$, et de même Φ_t et out sont les solutions de l'équation (2 bis) se réduisant respectivement à pin et jout pour t=0. Lorsque Φ est donné, les éléments Φ^{in} et Φ^{out} de \underline{H} sont uniquement déterminés, et de même norme que 🏺 ; si 🏺 est asymptotiquement libre, il satisfait à l'équation (21) , et en particulier , c'est un état de diffusion .

L'hypothèse asymptotique est la suivante :

- a) Tout élément Φ de $H_c = H_ac + H_{sc}$ est asymptotiquement libre. b) Les applications linéaires isométriques $\Phi \mapsto \Phi^{in}$ et $\Phi \mapsto \Phi^{out}$ de H_a dans H sont surjectives , donc unitaires .

L'hypothèse asymptotique entraîne les relations

$$\underline{\underline{H}}_p = \underline{\underline{H}}_{li\acute{e}}$$
, $\underline{\underline{H}}_{ac} = \underline{\underline{H}}_{diff}$, $\underline{\underline{H}}_{sc} = \{0\}$.

PROBLEME IV : Donner des conditions sur le potentiel V permettant de démontrer l'hypothèse asymptotique .

Voici quelques commentaires sur ce problème . L'hypothèse asymptotique ne peut être vraie que si V décroît assez rapidement à l'infini . De manière intuitive , pour que les solutions de l'équation de Schrödinger (2) ressemblent pour |t| assez grand à celles de l'équation (2 bis) correspondant à V = O , il faut que l'influence de V ne s'étende ni trop loin , ni trop longtemps . En particulier , pour n = 3 , et V(x) = C/|x| (avec

C < 0), on sait que l'hypothèse asymptotique n'est pas satisfaite telle quelle; ce cas a été étudié en détail par Dollard [35,36]. Faute de place, nous ne parlerons pas de ces potentiels à longue portée, pour lesquels nous renvoyons le lecteur à [29], [32], [37], [38] et [41], ainsi qu'aux travaux d'Agmon [25]-[28].

L'équation de Schrödinger dans $\underline{\mathbb{R}}^3$ correspond au cas d'une particule se déplaçant dans le champ d'un potentiel fixe. Le cas de deux particules x et y , interagissant par un potentiel ne dépendant que du vecteur \overrightarrow{xy} , se ramène au précédent par l'artifice classique en Mécanique de séparation du mouvement du centre de gravité . Le cas de $N \geq 3$ particules se ramène, après séparation du mouvement du centre de gravité , à une équation de Schrödinger dans $\underline{\mathbb{R}}^n$ avec n = 3N - 3. Mais en général , le potentiel V ne tend plus vers 0 à l'infini , et la description des états asymptotiques est beaucoup plus compliquée . Le problème à N corps est encore plus compliqué qu'en Mécanique Céleste , et nous renverrons le lecteur aux travaux $\{2\}$, $\{5\}$, $\{6\}$, vol.III $\{7\}$, $\{8\}$, $\{34\}$ et $\{43\}$.

A titre d'illustration , considérons le cas de l'hélium composé d'un noyau , que nous supposerons fixe , et de deux électrons occupant les positions x et y . On a une équation de Schrödinger dans l'espace $\underline{R}^3 > \underline{R}^3 = \underline{R}^6$ avec le potentiel

$$V(x,y) = -2e^2/|x| - 2e^2/|y| + e^2/|x - y|$$

qui ne tend pas vers 0 à l'infini (on a noté e la charge électrique de l'électron). Les états asymptotiques se décrivent physiquement comme suit :

2 électrons liés au noyau d'hélium hélium ionisé , l électron libre hélium 2 fois ionisé , 2 électrons libres ,

et il convient de comparer les solutions de l'équation de Schrödinger à celles de trois équations différentielles correspondant aux trois situations précédentes.

§ 2. Méthodes non-stationnaires

8. Considérons de manière générale un espace de Hilbert \underline{H} et deux opérateurs auto-adjoints H_o et H_o et H_o engendrant les groupes à un paramètre H_o et H_o et H_o et H_o et H_o est absolument continu , c'est-à-dire que les mesures spectrales de H_o sont absolument continues par rapport à la mesure de Lebesgue . On pose H_o et H_o pour tout t réel . L'hypothèse asymptotique équivaut alors à la conjonction des propriétés H_o et H_o et H_o conjonction des propriétés H_o et H_o et H_o est H_o pour tout H_o et H_o pour tout H_o pour tout H_o et H_o pour tout H_o po

A) <u>lour tout vecteur</u> ϕ <u>dans</u> <u>H</u>, <u>la limite suivante existe</u>:

Comme les opérateurs W_t sont unitaires , les opérateurs W_t sont isométriques ; on les appelle opérateurs de Møller [16] (ou opérateurs d'onde) . On a la relation fondamentale

$$U_{t}^{W} = W_{t}^{O} \quad \text{pour tout t réel} \quad .$$

B) Les opérateurs W_+ et W_- ont la même image I.

Il suffit en fait de postuler qu'on a $Im \ W_-$ C $Im \ W_+$ et qu'il existe un opérateur antiunitaire Θ dans H tel que

(28)
$$\theta U_{t} = U_{-t}\theta , \quad \theta U_{t}^{0} = U_{-t}^{0}\theta$$

c'est-à-dire laissant invariants H et H ("invariance par renversement du temps"); ces relations entraînent en effet $\Theta W_+ = W_-\Theta$.

Si les propriétés A) et B) sont satisfaites , W₊ et W₋ transforment l'opérateur auto-adjoint H_o dans \underline{H} en la restriction de H à \underline{I} . Vu l'hypothèse faite sur le spectre de H_o , on a donc \underline{I} \underline{C} \underline{H} _{ac} , où la décomposition \underline{H} = \underline{H} _p \bullet \underline{H} _{ac} \bullet \underline{H} _{sc} se rapporte à H .

C) ("Complétude asymptotique") On a Im $W_+ = Im W_- = \frac{H}{AC} \frac{et}{SC} = \{0\}$.

Si les propriétés A), B) et C) sont satisfaites, W₊ et W₋ sont des isomorphismes d'espaces hilbertiens de \underline{H} sur \underline{H} transformant H₀ en la restriction de H à \underline{H} . Pour déterminer complètement la décomposition spectrale de H , il suffit donc de connaître les fonctions propres de H et la décomposition spectrale de H .

On pourrait présenter la théorie de manière plus symétrique en considérant deux espaces de Hilbert $\underline{\mathbb{H}}_1$ et $\underline{\mathbb{H}}_2$, et pour j=1,2 un opérateur auto-adjoint \mathbb{H}_j dans $\underline{\mathbb{H}}_j$ engendrant le groupe à un paramètre $U_t^j=e^{-itH_j}.$ On choisit un opérateur borné J de $\underline{\mathbb{H}}_2$ dans $\underline{\mathbb{H}}_1$ et l'on définit les opérateurs de Møller par les formules

$$\mathbf{W}_{\underline{+}} \stackrel{\mathbf{T}}{\Phi} = \lim_{t \to \pm \infty} \mathbf{U}_{-t}^{1} \mathbf{J} \mathbf{U}_{t}^{2} \stackrel{\mathbf{T}}{\Phi}$$

pour Φ dans $(\underline{H}_2)_{ac}$ (partie absolument continue de \underline{H}_2 pour l'opérateur \underline{H}_2). Cette généralisation a été développée par Kato (voir [8]); elle est utile dans le problème des N corps.

9. Voici quelques conséquences des propriétés A) et B) ci-dessus . Soit Φ dans \underline{H} ; posons $\Phi_t = U_t^o \Phi$ et $\Psi_t = U_t^w \Phi$. On a alors

(29)
$$i \partial \psi_t / \partial t = H \psi_t$$
, $i \partial \phi_t / \partial t = H_0 \phi_t$

On pose ensuite $\chi_t = U_t^0 W_+^* W_- \overline{Q}$, d'où

$$i \delta \chi_t / \delta t = H_o \chi_t$$

(32)
$$\chi_t = W_+^* \Psi_t \qquad , \quad \lim_{t \to +\infty} ||\Psi_t - \chi_t|| = 0.$$

Autrement dit, $\Psi = W_{0}$ est un état asymptotiquement libre tel que $\overline{Q} = \Psi^{in}$ et $\chi = \overline{\Psi}^{out}$; si l'on pose $S = W_{+}^{\overline{W}}$, on aura

$$\mathbf{\bar{\Psi}}_{t}^{\text{out}} = \mathbf{S}\mathbf{\bar{\Psi}}_{t}^{\text{in}} .$$

L'opérateur S est défini dès que W_+ et W_- le sont (hypothèse A); il est unitaire si et seulement si W_+ et W_- ont même image (hypothèse B). On l'appelle l'opérateur de diffusion; il commute aux opérateurs U_+° , donc à H_- .

10. Explicitons la signification de cet opérateur S dans le cas où $\underline{H}=L^2(\underline{\mathbb{R}}^n)$ et H_0 est le prolongement auto-adjoint de $-\Delta$ défini au n^0 2 . On définit un difféomorphisme de $\underline{\mathbb{R}}^n \setminus \{0\}$ sur]0, $+\infty[\times \underline{\mathbb{S}}^{n-1} (\underline{\mathbb{S}}^{n-1} \text{ est la sphère unité dans } \underline{\mathbb{R}}^n)$ par $\{ -1/2,$

Soit $\Phi \neq 0$ dans \underline{H} . Un calcul facile , utilisant les formules (11) et (12) montre que , pour toute fonction mesurable et bornée F sur \underline{R}^n , on a

(34)
$$\int F \cdot |U_{t}^{0} \tilde{Q}|^{2} d^{n}x = \int F(2\xi t) \cdot |\hat{T}_{t}(\xi)|^{2} d^{n}\xi$$

avec

(35)
$$f_{+}(x) = e^{i|x|^{2}/4t} \overline{Q}(x) \qquad \text{pour } x \text{ dans } \underline{R}^{n}.$$

Il est clair que f_t tend vers $\overline{\Phi}$ dans \underline{H} lorsque t tend vers l'infini ; par ailleurs on a

(36)
$$\lim_{t\to +\infty} ||U_tW_-\overline{Q} - U_t^0S\overline{Q}|| = 0.$$

Prenant pour F la fonction caractéristique d'un cône C , on déduit des formules précédentes la relation

(37)
$$\lim_{t\to +\infty} \mu_t(c) = \int_C |\widehat{sp}(\xi)|^2 d^n \xi .$$

Autrement dit , la projection sur la sphère \underline{S}^{n-1} de la mesure de probabilité $\underline{\mu}_t$ sur \underline{R}^n définie par (18) (remplacer $\underline{\phi}_t$ par $\underline{\psi}_t$) a une limite décrite par (37) .

Venons-en au cas physique n = 3 . On a l'interprétation suivante :

Le potentiel V représente l'influence d'un obstacle. Envoyons sur cet obstacle un flux de N particules par unité de surface, dans la direction définie par un élément ω de S^2 , d'énergie cinétique E . Observons la partie du faisceau diffusée dans un cône C de sommet 0, de base $\operatorname{CC}\operatorname{S}^2$. Le nombre de particules diffusées dans C est

donné par la formule

(38)
$$N(C) = 4\pi^{2}NE^{-1} \int_{\Gamma} |R_{E}(\omega,\omega')|^{2} d\omega'.$$

Le fait que S soit unitaire traduit la conservation du nombre total de particules .

ll. Venons-en à la preuve de l'existence des opérateurs de Møller . Choisissons un sous-espace vectoriel \underline{D} de $\underline{D}(H_0) \cap \underline{D}(H)$, supposé dense dans \underline{H} et invariant par les opérateurs $U_{\mathbf{t}}^0$. Notons V la restriction de $H-H_0$ à \underline{D} , et définissons l'application linéaire $V(\mathbf{t}) = U_{-\mathbf{t}}^0 V U_{\mathbf{t}}^0$ de \underline{D} dans \underline{H} .

Soit $\overline{\mathbf{Q}}$ dans $\underline{\mathbf{D}}$; un calcul immédiat donne la relation

$$\frac{\mathrm{d}}{\mathrm{d}t} \, \mathbf{w}_t \overline{\mathbf{0}} = \mathrm{i} \mathbf{w}_t \mathbf{v}(t) \overline{\mathbf{0}}$$

Comme W_t est unitaire , on a $||W_tV(t)Q|| = ||V(t)Q||$, d'où aussitôt le critère de Cook [10] et Haak [11] :

Introduisons le produit chronologique de Dyson par les règles :

- \mathbf{x}) $\mathbf{T}(\mathbf{V}(\mathbf{t}_1)...\mathbf{V}(\mathbf{t}_n))$ est fonction symétrique des nombres $\mathbf{t}_1,...,\mathbf{t}_n$;
- b) si $t_1 \ge ... \ge t_n$, on a $T(V(t_1)...V(t_n)) = V(t_1)...V(t_n)$.

On déduit formellement de l'équation différentielle (39) la relation

(40)
$$W_{b}^{*}W_{a} = \sum_{n=0}^{\infty} (-i)^{n}/n! \int_{a}^{b} ... \int_{a}^{b} T(V(t_{1})...V(t_{n})) dt_{1}...dt_{n}$$

pour a < b . Par passage à la limite , on obtient la célèbre formule de Dyson

(41)
$$S = \sum_{n=0}^{\infty} (-i)^n / n! \int_{\underline{R}^n} T(V(t_1)...V(t_n)) dt_1...dt_n ;$$

vu les difficultés liées à la convergence d'une telle série, nous n'en ferons pas usage.

12. Quittons la théorie générale et revenons au cas où $\underline{H} = L^2(\underline{\underline{R}}^n)$, et où l'espace de Schwartz $\underline{S}(\underline{\underline{R}}^n)$ est contenu dans $\underline{D}(\underline{H}_n) \cap \underline{D}(\underline{H})$ avec

(42)
$$\text{H}_{0}\overline{\Phi} = -\Delta \Phi , \quad \text{H}\overline{\Phi} = -\Delta \Phi + V\Phi \quad \text{pour } \Phi \text{ dans } \underline{S}(\underline{R}^{n}) .$$

Nous prendrons pour \underline{D} l'espace des fonctions de $\underline{S}(\underline{R}^n)$ dont la transformée de Fourier est nulle en dehors d'une partie compacte de \underline{R}^n ne contenant pas 0.

Pour $\overline{\underline{\mathbf{0}}}$ dans $\underline{\underline{\mathbf{D}}}$, on a

(43)
$$||v(t).\overline{Q}||^2 = \int |v|^2 |v_{t}^{0}\overline{Q}|^2 d^n x = \int |v(2\xi t)|^2 |\widehat{f}_{t}(\xi)|^2 d^n \xi$$

d'après la formule (34). Les opérateurs de Møller existent alors si V satisfait à la condition suivante :

pour toute partie compacte K de R^n ne contenant pas 0 . C'est le cas si l'on a

(45)
$$|V(x)| \le C.|x|^{-S}$$
 pour tout x tel que $|x| > R$,

pourvu que les constantes $\,\,C\,$, s et $\,R\,$ satisfassent à $\,C\,\!>\,\!0\,$, s $\,\!>\,\!1$ et $R\,\!>\,\!0\,$.

Ces résultats ont été généralisés par Hörmander [38] . On suppose toujours que $\underline{S(R}^n)$ est contenu dans $\underline{D}(H_0) \wedge \underline{D}(H)$ et que l'on a

(46)
$$H \circ \overline{\Phi} = P(D) \overline{\Phi} , \quad H \overline{\Phi} = P(D) \overline{\Phi} + \sum_{|\alpha| \le m} V .D \circ \overline{\Phi}$$

liptique à coefficients constants , et chacune des fonctions $\, V_{al} \,$ satisfait à la condition (44). On suppose aussi que le déterminant des dérivées secondes $\sqrt[3]{2}$ P/ $\sqrt[3]{\xi_i}$ ne s'annule pas identiquement . L'espace $\underline{\mathtt{D}}$ se compose des fonctions de $\underline{\mathtt{S}}(\underline{\mathtt{R}}^n)$ dont la transformée de Fourier a un support compact contenu dans l'ouvert Ω où D \neq 0.

Pour la démonstration , on applique le critère de Cook-Haak . Mais D est stable par les opérateurs de dérivation $D^{\mbox{\scriptsize M}}$, et comme P(D) commute à ces opérateurs , on a

$$V(t) = \sum_{|\alpha| \leq m} e^{itP(D)} V_{\alpha}(x) e^{-itP(D)}.D^{\alpha}.$$

On est donc ramené à étudier des opérateurs pseudo-différentiels de la forme

(48)
$$A_{+} = e^{itP(D)}V(x)e^{-itP(D)}$$

et à leur comportement asymptotique pour t tendant vers l'infini . Si l'on échange x et D au moyen d'une transformation de Fourier, on se ramène à des problèmes bien connus qui se traîtent par la méthode de la phase stationnaire .

Une autre généralisation est due à A.M. Berthier et P.Collet ans [31]. Dans leur cas , on a $H_0 = -\Delta$, mais V est un opérateur pseudo-différentiel convenable . Les idées sont analogues , mais la technique est beaucoup plus compliquée .

13. Nous abordons maintenant le problème de la complétude asymptotique (propriété C) . Il est en principe symétrique du problème de l'existence des opérateurs de Møller, car il suffit de prouver l'existence des limites

$$\lim_{t \to \pm \infty} U_{-t}^{0} U_{t}^{0} \overline{Q}$$

où Φ parcourt un sous-espace dense de $\frac{H}{ac}$; on a évidemment un critère analogue à celui de Cook et Haak en échangeant H et H , mais en général , H est beaucoup moins bien connu que Ho et il est plus difficile de contrôler les opérateurs U_tVU, que les opérateurs U_t VU_t .

Un critère classique , dû à Birman et Pearson , assure l'existence des limites (49) sous les hypothèses suivantes (on suppose H borné inférieurement pour simplifier) :

- a) Pour c > 0 assez grand, on a $|| V(H_0 + c)^{-1} || < 1$.
- b) $\underline{\text{Si}}$ E(I) est le projecteur spectral de H associé à une partie bornée I de R,

En pratique, ces conditions sont assez faciles à vérifier; c'est ce que font A.M. Berthier et P.Collet dans le travail cité plus haut (voir aussi Kuroda [14]).

14. Une nouvelle méthode "géométrique" vient d'être proposée par Enss [37] (voir aussi Simon [44] et Deift-Simon [34]); elle est sans doute appelée à un grand avenir.

Les hypothèses sont les suivantes :

- a) L'opérateur Ho est le prolongement auto-adjoint de A déjà considéré.
- b) On a $\underline{D}(H) = \underline{D}(H_0)$. Si l'on note V l'opérateur $H H_0$ de domaine $\underline{D}(H_0)$, il existe des constantes 0 < a < 1 et b > 0 telles que l'on ait

$$||V\overline{\phi}|| \leq a ||H\overline{\phi}|| + b ||\overline{\phi}|| \quad \text{pour } \overline{\phi} \quad \text{dans } \underline{D}(H_{\underline{\phi}}).$$

c) Si F R est la fonction caractéristique de l'ensemble des x dans $\underline{\underline{R}}^n$ tels que $|x| \le R$, on a

(51)
$$\int_0^\infty ||V.(H_0 + 1)^{-1}(1 - F_R)|| dR < + \infty .$$

C'est cette dernière relation qui assure que V décroît assez vite à l'infini (attention: on ne suppose pas que V soit la multiplication par une fonction!).

Comme $(H_0+i)(H+i)^{-1}$ est borné d'après (50) , et que l'opérateur $F_R(H_0+i)^{-1}$ est compact d'après le n° 2 , l'opérateur $F_R(H+i)^{-1}$ est compact et l'on peut appliquer les résultats de Ruelle et Amrein-Georgescu considérés au n° 6 . On choisit dans \underline{H}_C un élément $\overline{\Phi} \neq 0$ dont la mesure spectrale (par rapport à H) ait un support compact I contenu dans $]0, +\infty[$. Comme $\overline{\Phi}$ est un état de diffusion , on peut construire des nombres t(m) tendant vers l'infini tels que

(52)
$$\lim_{m \to \infty} ||F_{13m} U_{t(m)} \vec{Q}|| = 0$$

(53)
$$\lim_{m \to \infty} \int_{-m}^{m} ||F_m U_{t+t(m)} (H+i) \overline{\phi}|| dt = 0 ,$$

puis l'on pose $\overline{\Phi}_m = U_{t(m)} \overline{\Phi}$. On choisit ensuite une fonction u dans $C_o^{\infty}(]0,+\infty[)$ égale à l sur I , d'où u(H) $\overline{\Phi}_m = \overline{\Phi}_m$; on pose $\overline{\Phi}_m^* = u(H_o).\overline{\Phi}_m$ et l'on prouve que $||\overline{\Phi}_m - \overline{\Phi}_m^*||$ tend vers 0.

Au moyen d'une partition de l'unité , on décompose $\overline{\Phi}_m$ en une fonction à support dans la boule de rayon m centrée en O , et des fonctions $\overline{\Phi}_m$, j localisées dans des cônes C_j privés de la partie à distance $\leq m/2$ de l'origine . On décompose ensuite $\overline{\Phi}_m$, j en $\overline{\Phi}_m^+$, j + $\overline{\Phi}_m^-$, j , les transformées de Fourier de ces deux morceaux étant approximativement portées par les demi-espaces limités par un hyperplan orthogonal à la direction centrale du cône C_j .

Pour prouver que la limite (49) existe , le calcul principal consiste à établir la formule

(54)
$$\lim_{m \to \infty} ||\mathbf{W}_{\pm} \overline{\Phi}_{m,j}^{\pm} - \overline{\Phi}_{m,j}^{\pm}|| = 0 ;$$

elle signifie que l'état $\overline{\Phi}_{m,j}^+$ est asymptotiquement libre dans le futur et $\Phi_{m,j}^-$ dans le passé .

§ 3. Méthodes stationnaires

15. Les méthodes stationnaires consistent à exploiter la résolvante de l'opérateur H plutôt que les opérateurs unitaires $U_t = e^{-itH}$, et en particulier le comportement au voisinage de l'axe réel . On renvoie à Friedrichs [18] et à Rejto [23,24] pour l'application de telles méthodes au cas où V est "gentle".

Nous esquisserons ici une méthode inventée par Howland [19] et développée de manière "abstraite" par Kato et Kuroda (voir [8] et [20]-[22]). Soit donc H un opérateur auto-adjoint dans un espace de Hilbert \underline{H} . Soit \underline{X} un espace de Banach plongé continuement et de manière dense dans \underline{H} ; on peut de manière naturelle identifier \underline{H} à un sous-espace de l'antidual \underline{X} ' de \underline{X} , soit

$$\underline{X} \subset \underline{H} \subset \underline{X}'$$
 (inclusions continues à image dense).

Pour tout nombre complexe z non réel , définissons la résolvante $R(z) = (H-z)^{-1}$. On suppose que dans l'espace de Banach $\underline{L}(\underline{X},\underline{X}')$ des applications linéaires continues de \underline{X} dans \underline{X}' , les limites $R(\lambda \pm i0) = \lim_{\epsilon \to 0} R(\lambda \pm i\epsilon)$ existent uniformément pour λ parcourant un intervalle compact ne contenant pas de valeur propre de H.

S'il en est ainsi , on a $\frac{H}{sc} = \{0\}$. Montrons comment on en déduit la décomposition spectrale de H , en supposant pour simplifier l'expression qu'il n'existe aucune valeur propre de H . Posons $E_{\lambda} = (2\pi i)^{-1} [R(\lambda + i0) - R(\lambda - i0)]$ pour tout λ réel . On a

(55)
$$(x|f(H)y) = \int_{\underline{R}} f(\lambda) (x|E_{\lambda}y) d\lambda$$
 pour x,y dans \underline{X} .

Posons

(56)
$$B_{\lambda}(x,y) = (x|E_{\lambda}y) \quad \text{pour } x,y \text{ dans } \underline{X}.$$

Alors B_{λ} est une forme hermitienne positive sur \underline{X} , dépendant continuement de λ . On peut alors compléter de manière naturelle l'image de E_{λ} en un espace de Hilbert \underline{H}_{λ} qui se plonge continuement dans \underline{X}' . Il existe un isomorphisme de l'espace de Hilbert \underline{H} avec l'intégrale hilbertienne des espaces \underline{H}_{λ} , diagonalisant l'opérateur \underline{H} .

16. La difficulté principale dans l'application de la méthode précédente est bien sûr le choix d'un "bon" espace de Banach $\underline{\mathbf{X}}$. Nous décrivons maintenant la solution d'Agmon et Hörmander [28].

On considère un opérateur différentiel de la forme

$$P = -\Delta + \sum_{|\alpha| \leq 2} V_{\alpha}(x).D^{\alpha}$$

dont les coefficients sont des fonctions continues Va satisfaisant aux inégalités

$$|V_{n}(x)| \leq C.(1+|x|)^{-s} \qquad \text{pour } x \text{ dans } \underline{R}^{n},$$

avec des constantes C>0 et s>1 convenables. On suppose que l'opérateur P est symétrique sur le domaine $C_0^\infty(\underline{\mathbb{R}}^n)$. Le critère de Rellich et Kato permet de montrer que P admet un unique prolongement auto-adjoint H dans l'espace de Hilbert $\underline{H}=L^2(\underline{\mathbb{R}}^n)$. La théorie du § 2 s'applique, les opérateurs de Møller \underline{W} sont définis, et ont pour image le sous-espace $\underline{H}_{ac}=\underline{H}_c$. Définissons la transformation de Fourier \underline{F} comme au n^0 2 et posons $\underline{F}_+=\underline{F}\underline{W}_+^*$; ce sont deux opérateurs unitaires de \underline{H}_{ac} sur $L^2(\underline{\mathbb{R}}^n)$ qui diagonalisent H au sens suivant

(59)
$$\underline{\underline{\mathbf{f}}}_{\mathbf{H}}^{\mathbf{H}}(\mathbf{\xi}) = |\mathbf{\xi}|^2 \underline{\underline{\mathbf{f}}}_{\mathbf{f}}(\mathbf{\xi})$$
 pour f dans $\underline{\underline{\mathbf{H}}}_{\mathbf{ac}}$

Nous allons décrire une construction directe des opérateurs \underline{F}_+ , due à Agmon [27]; on peut ensuite retrouver les opérateurs de Møller par la formule $W_+^{\overline{A}} := \underline{F}^{-1}\underline{F}_+$.

Introduisons d'abord les espaces fonctionnels d'Agmon et Hörmander [28]:

- a) L'espace $L^{2,8}$ se compose des fonctions f telles que $(1+|x|)^{8}f(x)$ appartienne à $L^{2}(R^{n})$.
 - b) L'espace B* se compose des fonctions mesurables f telles que

(60)
$$\sup_{R \geq 1} R^{-1} \int_{|x| \leq R} |f(x)|^2 d^n x < + \infty .$$

c) L'espace B se compose des fonctions mesurables f telles que

(61)
$$\lim_{R\to +\infty} R^{-1} \int_{|\mathbf{x}|\leq R} |\mathbf{f}(\mathbf{x})|^2 d^n \mathbf{x} = 0 .$$

Il est clair que B_0^{\pm} est un sous-espace de B^{\pm} et le premier membre de la formule (60) suggère des normes pour lesquelles B^{\pm} et B_0^{\pm} sont des espaces de Banach. Enfin , notons comme précédemment R(z) la résolvante de H.

Voici le résultat fondamental d'Agmon :

Soit s > 1/2 et soit f dans L2,8 . Alors:

1) Si le nombre E > 0 n'est pas valeur propre de H , la limite

(62)
$$R(E \pm i0).f = \lim_{\varepsilon \to 0} R(E \pm i\varepsilon).f$$

existe dans l'espace de Banach B muni de sa topologie faible .

2) Etant donné un nombre k > 0 tel que $R(k^2 + i0)$ existe , il existe des fonctions $a_k^+ \frac{1}{2} \frac{1}{2$

(63)
$$R(k^{2} \pm i0)f(r.\omega) = r^{-(n-1)/2} \frac{\pm ikr}{k} \frac{\pm i}{k}(\omega) \quad \text{modulo } B_{0}^{*}$$

pour r > 0 et ω dans \underline{S}^{n-1} .

3) Dans les conditions précédentes , on a

(64)
$$\mathbf{a}_{\mathbf{k}}^{+}(\mathbf{\omega}) = \mathbf{c}_{\mathbf{n}}^{+} \mathbf{k}^{(\mathbf{n}-3)/2} \underline{\mathbf{F}}_{+} \mathbf{f}(\pm \mathbf{k} \mathbf{\omega})$$

pour
$$k > 0$$
, ω dans $\underline{\underline{S}}^{n-1}$, avec les constantes
$$c_n^{+} = (\pi/2)^{1/2} e^{+i(n-3)/4}$$

Comme les fonctions appartenant à $B_0^{\frac{\pi}{4}}$ sont en un sens généralisé nulles à l'infini , la formule (63) doit être interprétée comme donnant le comportement asymptotique de la fonction $R(k^2 \pm i0)$.f . De telles formules asymptotiques étaient connues , mais sans justification suffisante .

17. Pour aller plus loin , il faut supposer que chaque fonction V_{∞} est de la forme V'_{∞} + V''_{∞} avec des fonctions V'_{∞} et V''_{∞} de classe C^{∞} telles que

(66)
$$\sup_{\mathbf{x}} |D^{\mathbf{R}}V_{\mathbf{x}}^{*}(\mathbf{x})|(1+|\mathbf{x}|)^{|\mathbf{S}|+\epsilon} < +\infty \quad \text{pour tout } \mathbf{S},$$

(67)
$$\sup_{\mathbf{x}} |V_{\mathbf{x}}^{\mathbf{m}}(\mathbf{x})| \cdot |\mathbf{x}|^{\mathbf{m}} < + \infty \qquad \text{pour tout entier } \mathbf{m} \geq 0.$$

Notons u_{ξ} la fonction $x \mapsto e^{ix}$. Comme la fonction V_{ξ} ugappartient à $L^{2,s}$, on peut définir une fonction $\overline{\phi}_{\xi}$ par la formule

(68)
$$\overline{\Phi}_{+}(x, \xi) = e^{ix \cdot \xi} - R(|\xi|^2 \pm i0)(\sum_{x} u_{\xi} \nabla_{x} \xi^{\alpha})(x) .$$

Alors les transformations de Fourier généralisées \underline{F}_+ sont données par

(69)
$$\underline{\underline{F}}_{\underline{f}}f(\xi) = (2\pi)^{-n/2} \int f(x) \overline{\underline{\phi}_{\underline{f}}(x, \xi)} d^{n}x$$

Nous ne pouvons que renvoyer à Agmon pour les nombreuses généralisations et applications de ces magnifiques résultats .

BIBLIOGRAPHIE

A. Ouvrages généraux

- [1] V. de ALFARO et T. REGGE Potential scattering, North Holland, Amsterdam, 1965.
- [2] W. AMREIN , J. JAUCH , K. SINHA Scattering theory in quantum mechanics , Benjamin, New York , 1977 .
- [3] K.O. FRIEDRICHS Perturbation of spectra in Hilbert space, Amer. Math. Soc. Lect. in Appl. Math., vol. 3, Providence, 1965.
- [4] T. KATO Perturbation theory for linear operators, 2^e édit., Springer, New York, 1976.
- [5] R.G. NEWTON Scattering theory of waves and particles , McGraw Hill , New York ,
- [6] M. REED et B. SIMON Methods of mathematical physics , Academic Press , New York : vol.II : Functional analysis , 1972 ; vol.III : Fourier analysis , self-adjointness , 1975 ; vol.III : Scattering theory , 1979 ; vol.IV : Analysis of operators , 1978 .
- [7] I.M. SIGAL, Mathematical foundations of quantum scattering theory for multiparticle systems, Memoirs Amer. Math. Soc., vol. 209, Providence, 1978.
- [8] W. THIRRING et P. URBAN (éditeurs) The Schrödinger equation, Springer, Wien, 1977.

B. Méthodes non-stationnaires

- [9] W. AMREIN et D.B. PEARSON A time-dependent approach to the total scattering cross-section, à paraître.
- [10] J.M. COOK Convergence to the Møller wave matrix , Journ. Math. Phys. 36 (1957) , p. 82-87 .
- [11] M.N. HAAK On the convergence to the Møller wave operators, Nuovo Cimento, X Ser. 13 (1959), p. 231-236.
- [12] J. JAUCH Theory of the scattering operator , Helv. Phys. Acta , 31 (1958) , p. 127-158 .
- [13] T. KATO Wave operators and unitary equivalence, Pac. Journ. Math., <u>15</u> (1965), p. 171-180.

- [14] S.T. KURODA On the existence and the unitary property of the scattering operator,
 Nuovo Cimento, X Ser. 12 (1959), p. 431-454.
- [15] S.T. KURODA Scattering theory for differential operators I: Operator theory, Journ. Math. Soc. Japan, <u>25</u> (1973), p. 75-104; II: Self-adjoint elliptic operators, <u>ibid.</u> p. 222-234.
- [16] C. MØLLER General properties of the characteristic matrix in the theory of elementary particles, Danske Vid. Selsk. Mat.-Fys. Medd. 22 (1946), no. 19.

C. Méthodes stationnaires

- [17] L.D. FADDEEV On the Friedrichs model in the perturbation theory of continuous spectrum, Trudy Math. Inst. Steklov, 73 (1964), p. 292-313 [en russe].
- [18] K.O. FRIEDRICHS On the perturbation of continuous spectra , Comm. Pure Appl. Math. 1 (1948) , p. 361-406 .
- [19] J.S. HOWLAND Banach space techniques in the perturbation theory of self-adjoint operators with continuous spectra , Journ. Math. Anal. and Appl., 20 (1967) , p. 22-47 .
- [20] T. KATO et S.T. KURODA Theory of simple scattering and eigenfunction expansions,

 in "Functional Analysis and Related Fields" (F.E. Browder éditeur), Springer,

 New York, 1970.
- [21] T. KATO et S.T. KURODA The abstract theory of scattering, Rocky Mount. Journ.

 Math., 1 (1971), p. 127-171.
- [22] S.T. KURODA An abstract stationary approach to perturbation of continuous spectra and scattering theory , Journ. Math. Anal. and Appl., 20 (1967) , p. 57-117 .
- [23] P.A. REJTO On gentle perturbations , Comm. Pure Appl. Math. , I : 16 (1963) , p. 279-303 ; II : 17 (1964) , p. 257-292 .
- [24] P.A. REJTO On partly gentle perturbations, Journ. Math. Anal. and Appl., I: 17
 (1967), p. 453-462; II: 20 (1967), p. 145-187; III: 27 (1969), p. 21-67.

D. Equation de Schrödinger

- [25] S. AGMON Spectral properties of Schrödinger operators , Actes Congrès Internat.

 Math. Nice , 1970 , vol. 2 , p. 679-684 .
- [26] S. AGMON Spectral properties of Schrödinger operators and scattering theory , Annali Scuola Norm. Sup. Pisa , Cl. Sci. II , 2 (1976) , p. 151-218 .

- [27] S. AGMON Some new results in spectral and scattering theory of differential operators on \mathbb{R}^n , Séminaire Goulaouic-Schwartz , Ecole Polytechnique , 1978 .
- [28] S. AGMON et L. HORMANDER Asymptotic properties of solutions of differential equations with simple characteristics, Journ. Anal. Math. 30 (1976), p. 1-38.
- [29] P. ALSHOLM et T. KATO Scattering with long range potentials , in "Partial differential equations", Proc. Symp. Pure Math., vol. 23, Amer. Math. Soc., Providence, 1973.
- [30] W. AMREIN et V. GEORGESCU On the characterization of bound states and scattering states in quantum mechanics, Helv. Phys. Acta, 46 (1973), p. 635-658.
- [31] A.M. BERTHIER et P. COLLET Existence and completeness of the wave operators in scattering theory with momentum-dependent potentials , Journ. Funct. Anal. , <u>26</u> (1977) , p. 1-15 .
- [32] A.M. BERTHIER et P. COLLET Wave operators for momentum dependent long range potentials , Ann. Inst. Henri Poincaré , série A , 26 (1977) , p. 279-293 .
- [33] H. BREZIS et T. KATO Remarks on the Schrödinger operator with singular complex potentials , à paraître .
- [34] P.J. DEIFT et B. SIMON A time-dependent approach to the completeness of multiparticle quantum systems, Comm. Pure Appl. Math., 30 (1977), p. 573-583.
- [35] J. DOLLARD Asymptotic convergence and the Coulomb interaction , Journ. Math. Phys. 5 (1964) , p. 729-738 .
- [36] J. DOLLARD Quantum mechanical scattering theory for short-range and Coulomb interaction, Rocky Mount. Journ. Math., 1 (1971), p. 5-88.
- [37] V. ENSS Asymptotic completeness for quantum mechanical potential scattering, I: Short range potentials, Comm. Math. Phys., 61 (1978), p. 285-291; II: Singular and long range potentials, à paraître aux Ann. Phys.
- [38] L. HÖRMANDER The existence of wave operators in scattering theory, Math. Zeit., 146 (1976), p. 69-91.
- [39] T. IKEBE Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory , Arch. Rat. Mech. Anal., 5 (1960) , p. 1-34 .
- [40] J. JAUCH et I. ZINNES The asymptotic condition for simple scattering systems , Nuovo Cimento , X Ser. 11 (1959) , p. 553-567 .

- [41] R.B. LAVINE Absolute continuity of positive spectrum for Schrödinger operators with long range potentials , Journ. Funct. Anal., 12 (1973) , p. 30-54 .
- [42] D. RUELLE A remark on bound states in potential scattering theory, Nuovo Cimento, 61A (1969), p. 655-662.
- [43] B. SIMON Geometric methods in multiparticle quantum systems, Comm. Math. Phys., 55 (1977), p. 259-274.
- [44] B. SIMON Phase space analysis of simple scattering systems, extension of some work of Enss, à paraître au Duke Math. Journ. .

Référence supplémentaire :

[2 bis] L.D. FADDEEV - Mathematical aspects of the three body problem in quantum scattering theory, Israël program for scientific translation, 1965.]