@incollection{SB_1973-1974__16__1_0, author = {Atiyah, M. F.}, title = {The heat equation in riemannian geometry}, booktitle = {S\'eminaire Bourbaki. : vol. 1973/74, expos\'es 436-452}, series = {S\'eminaire Bourbaki}, note = {talk:436}, pages = {1--11}, publisher = {Springer-Verlag}, number = {16}, year = {1975}, mrnumber = {431286}, zbl = {0322.58011}, language = {en}, url = {http://www.numdam.org/item/SB_1973-1974__16__1_0/} }
TY - CHAP AU - Atiyah, M. F. TI - The heat equation in riemannian geometry BT - Séminaire Bourbaki. : vol. 1973/74, exposés 436-452 AU - Collectif T3 - Séminaire Bourbaki N1 - talk:436 PY - 1975 SP - 1 EP - 11 IS - 16 PB - Springer-Verlag UR - http://www.numdam.org/item/SB_1973-1974__16__1_0/ LA - en ID - SB_1973-1974__16__1_0 ER -
%0 Book Section %A Atiyah, M. F. %T The heat equation in riemannian geometry %B Séminaire Bourbaki. : vol. 1973/74, exposés 436-452 %A Collectif %S Séminaire Bourbaki %Z talk:436 %D 1975 %P 1-11 %N 16 %I Springer-Verlag %U http://www.numdam.org/item/SB_1973-1974__16__1_0/ %G en %F SB_1973-1974__16__1_0
Atiyah, M. F. The heat equation in riemannian geometry, dans Séminaire Bourbaki. : vol. 1973/74, exposés 436-452, Séminaire Bourbaki, no. 16 (1975), Exposé no. 436, 11 p. http://www.numdam.org/item/SB_1973-1974__16__1_0/
1. A Lefschetz fixed-point formula for elliptic complexes I, Ann. of Math. 86 (1967), 374-407. | MR | Zbl
and ,2. On the heat equation and the index theorem, Inventiones Math. 19 (1973), 279-330. | MR | Zbl
, and ,3. Spectral asymmetry and Riemannian geometry, Bull. London Math. Soc. 5 (1973), 229-234. | MR | Zbl
, and ,4. The index of elliptic operators I, Ann. of Math. 87 (1968), 484-530. | MR | Zbl
and ,5. Curvature and the eigenvalues of the Laplacian for elliptic complexes, Advances in Mathematics (to appear). | MR | Zbl
,6. Curvature and the eigenforms of the Laplace operator, J. Diff. Geometry 5 (1971), 233-249. | MR | Zbl
,7. V.An analytic proof of the Riemann-Roch-Hirzebruch theorem for Kaehler manifolds, J.Diff. Geometry 5 (1971), 251-283. | MR | Zbl
,