@incollection{SB_1969-1970__12__213_0, author = {Deligne, Pierre}, title = {Travaux de {Griffiths}}, booktitle = {S\'eminaire Bourbaki : vol. 1969/70, expos\'es 364-381}, series = {S\'eminaire Bourbaki}, note = {talk:376}, pages = {213--237}, publisher = {Springer-Verlag}, number = {12}, year = {1971}, zbl = {0208.48601}, language = {fr}, url = {http://www.numdam.org/item/SB_1969-1970__12__213_0/} }
TY - CHAP AU - Deligne, Pierre TI - Travaux de Griffiths BT - Séminaire Bourbaki : vol. 1969/70, exposés 364-381 AU - Collectif T3 - Séminaire Bourbaki N1 - talk:376 PY - 1971 SP - 213 EP - 237 IS - 12 PB - Springer-Verlag UR - http://www.numdam.org/item/SB_1969-1970__12__213_0/ LA - fr ID - SB_1969-1970__12__213_0 ER -
Deligne, Pierre. Travaux de Griffiths, dans Séminaire Bourbaki : vol. 1969/70, exposés 364-381, Séminaire Bourbaki, no. 12 (1971), Exposé no. 376, 25 p. http://www.numdam.org/item/SB_1969-1970__12__213_0/
[1] Periods of integrals on algebraic manifolds. I (Construction and properties of the modular Varieties), Am. J. Math., XC 2, 1968, p. 568-626. II, Am. J. Math., XC 3, 1968, p. 805-865. III (Some global differential-geometric properties of the period mapping), à paraître aux Publ. I.H.E.S. | MR | Zbl
-[2] Some results on Moduli and Periods of Integrals on Algebraic Manifolds III, Notes miméographiées de Princeton.
-[3] On the periods of integrals on algebraic manifolds, Rice un. studies, 54, 4, 1968. Cet article résume, sans démonstration [1] I, II. | MR | Zbl
-[4] On the periods of certain rational integrals, I, II, Annals of Maths., 90 (1969), p. 460-541. | MR | Zbl
-III, à paraître aux Annals of Maths.
[5] A theorem on periods of integrals on algebraic manifolds, Notes miméographiées de Yale.
-[6] Some results on algebraic cycles on algebraic manifolds, in Bombay Colloquium 1968, Oxford University Press. | MR | Zbl
-[7] Periods of integrals on algebraic manifolds (Summary of main results and discussions of open problems and conjectures), Bull. Am. Math. Soc., 75, 2, (1970), p. 228-296. Cet article est très intéressant par les nombreuses conjectures qu'il discute. | MR | Zbl
-[8] Locally homogeneous complex manifolds, Acta Mathematica, 1970, p. 253-302. | MR | Zbl
and -[9] Nilpotent connections and the monodromy theorem, Applications of a results of Turrittin, à paraître aux Publ. I.H.E.S. | Numdam | Zbl
-[10] On the differentiation of De Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ., 8, 2, 1968, p. 199-213. | MR | Zbl
and -