@article{SAF_1979-1980____A14_0, author = {Johnson, W. B.}, title = {Operators into $L_p$ which factor through $l_p$}, journal = {S\'eminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz")}, note = {talk:17}, pages = {1--6}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1979-1980}, language = {en}, url = {http://www.numdam.org/item/SAF_1979-1980____A14_0/} }
TY - JOUR AU - Johnson, W. B. TI - Operators into $L_p$ which factor through $l_p$ JO - Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") N1 - talk:17 PY - 1979-1980 SP - 1 EP - 6 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://www.numdam.org/item/SAF_1979-1980____A14_0/ LA - en ID - SAF_1979-1980____A14_0 ER -
%0 Journal Article %A Johnson, W. B. %T Operators into $L_p$ which factor through $l_p$ %J Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") %Z talk:17 %D 1979-1980 %P 1-6 %I Ecole Polytechnique, Centre de Mathématiques %U http://www.numdam.org/item/SAF_1979-1980____A14_0/ %G en %F SAF_1979-1980____A14_0
Johnson, W. B. Operators into $L_p$ which factor through $l_p$. Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980), Exposé no. 17, 6 p. http://www.numdam.org/item/SAF_1979-1980____A14_0/
[1] A uniformly convex Banach space which contains no lp, Compositio Math. 29 (1974), 179-190. | Numdam | MR | Zbl
and ,[2] Operators into L which factor through l p, J. London Math. Soc. (2) 14 (1976), 333-339. | MR | Zbl
,[3] Quotients of L which are quotients of l p, Compositio Math. | Numdam | Zbl
,[4] A reflexive Banach space which is not sufficiently Euclidean, Studia Math. 55 (1976), 201-205. | MR | Zbl
,[5] Subspaces of L which embed into l p, Compositio Math. 28 (1974), 34-49. | Numdam | Zbl
and ,[6] Bases, lacunary sequences, and complemented subspaces in the spaces Lp Studia Math. 21 (1962), 161-176. | Zbl
and ,[7] Classical Banach spaces, I, Sequence spaces, Springer-Verlag, Ergebnisse No. 92 (1977). | MR | Zbl
and ,[8] Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228. | MR | Zbl
,[9] On the subspaces of Lp (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303. | MR | Zbl
,