@article{SAF_1978-1979____A24_0, author = {Rosenthal, H. P.}, title = {Subspaces of $L^p$ which do not contain $L^p$-isomorphically}, journal = {S\'eminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz")}, note = {talk:28}, pages = {1--9}, publisher = {Ecole Polytechnique, Centre de Math\'ematiques}, year = {1978-1979}, zbl = {0451.46020}, language = {en}, url = {http://www.numdam.org/item/SAF_1978-1979____A24_0/} }
TY - JOUR AU - Rosenthal, H. P. TI - Subspaces of $L^p$ which do not contain $L^p$-isomorphically JO - Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") N1 - talk:28 PY - 1978-1979 SP - 1 EP - 9 PB - Ecole Polytechnique, Centre de Mathématiques UR - http://www.numdam.org/item/SAF_1978-1979____A24_0/ LA - en ID - SAF_1978-1979____A24_0 ER -
%0 Journal Article %A Rosenthal, H. P. %T Subspaces of $L^p$ which do not contain $L^p$-isomorphically %J Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") %Z talk:28 %D 1978-1979 %P 1-9 %I Ecole Polytechnique, Centre de Mathématiques %U http://www.numdam.org/item/SAF_1978-1979____A24_0/ %G en %F SAF_1978-1979____A24_0
Rosenthal, H. P. Subspaces of $L^p$ which do not contain $L^p$-isomorphically. Séminaire d'Analyse fonctionnelle (dit "Maurey-Schwartz") (1978-1979), Exposé no. 28, 9 p. http://www.numdam.org/item/SAF_1978-1979____A24_0/
[1] On separable Banach spaces, universal for all separable reflexive spaces, to appear. | MR | Zbl
:[2] Les dérivations en théorie descriptive des ensembles et le théorème de la borne, Séminaire de Probas. XI, Université de Strasbourg, Lecture Notes No 581, pp. 34-46, Springer 1977. | Numdam | MR | Zbl
:[3] Symmetric structures in Banach spaces, Memoirs A.M.S. (to appear). | MR | Zbl
, , and :[4] On the span in Lp of sequences of independent random variables (II), Proc. 6-th Berkeley Symp. on Math. Stat. and Prob., vol. II (1972), pp. 149-167. | MR | Zbl
:[5] On applications of the boundedness principle to Banach space theory, according to J. Bourgain, Séminaire d'Initiation à l'Analyse, Paris VI (1979) (to appear). | MR | Zbl
:[6]
and , to appear.[7] Examples of Lp -spaces (1 < p < ∞, p≠2), Israel J. Math. | Zbl
: