A survey on the general central limit problem in Banach spaces
Séminaire Maurey-Schwartz (1977-1978), Exposé no. 24, 17 p.
@article{SAF_1977-1978____A18_0,
     author = {Gin\'e, E.},
     title = {A survey on the general central limit problem in {Banach} spaces},
     journal = {S\'eminaire Maurey-Schwartz},
     note = {talk:24},
     pages = {1--17},
     publisher = {Ecole Polytechnique, Centre de Math\'ematiques},
     year = {1977-1978},
     mrnumber = {520221},
     zbl = {0405.60007},
     language = {en},
     url = {http://www.numdam.org/item/SAF_1977-1978____A18_0/}
}
TY  - JOUR
AU  - Giné, E.
TI  - A survey on the general central limit problem in Banach spaces
JO  - Séminaire Maurey-Schwartz
N1  - talk:24
PY  - 1977-1978
SP  - 1
EP  - 17
PB  - Ecole Polytechnique, Centre de Mathématiques
UR  - http://www.numdam.org/item/SAF_1977-1978____A18_0/
LA  - en
ID  - SAF_1977-1978____A18_0
ER  - 
%0 Journal Article
%A Giné, E.
%T A survey on the general central limit problem in Banach spaces
%J Séminaire Maurey-Schwartz
%Z talk:24
%D 1977-1978
%P 1-17
%I Ecole Polytechnique, Centre de Mathématiques
%U http://www.numdam.org/item/SAF_1977-1978____A18_0/
%G en
%F SAF_1977-1978____A18_0
Giné, E. A survey on the general central limit problem in Banach spaces. Séminaire Maurey-Schwartz (1977-1978), Exposé no. 24, 17 p. http://www.numdam.org/item/SAF_1977-1978____A18_0/

1 De Acosta, A. (1970). Existence and convergence of probability measures in Banach spaces. Trans. Amer. Math. Soc. 152 273-298. | MR | Zbl

2 De Acosta, A. and Samur, J. (1977). Infinitely divisible probability measures and the converse Kolmogorov inequality in Banach spaces. Studia Math. (To appear). | MR | Zbl

3 De Acosta, A., Araujo, A. and Giné, E. (1977). On Poisson measures, Gaussian measures and the central limit theorem in Banach spaces. Advances in Probability, Vol. IV. M. Dekker, New York. (To appear). | MR

4 Araujo, A. (1975). On the central limit theorem in Panach spaces. J. Multivariate Analysis. (To appear). | MR | Zbl

5 Araujo, A. and Giné, E. (1976). Type, cotype and Levy measures on Banach spaces. Ann. Probability. (To appear). | Zbl

6 Araujo, A. and Giné, E. (1977). On tails and domains of attraction of stable measures in Banach spaces. Trans. Amer. Math. Soc. (To appear). | MR | Zbl

7 Araujo, A. and Gine, E. (1978). On row sums of triangular arrays and their accompanying Poisson measures in Panach spaces. Preprint. (To appear).

8 Dettweiler, E. (1976). Grezwetsätze für Wahrscheinlichkeitsmasse auf Badrikianschen Räumen. Z. Wahrscheinlichkeitstheorie verw. Geb. 34 285-311. | MR | Zbl

9 Giné, E. (1978). The general central limit theorem in lp, 2≤p<∞. Preprint. (To appear).

10 Giné, E. and León, J. (1977). On the central limit theorem in Hilbert space. IVIC preprint series in Math. #5. To appear in Proc. 1st Conference of Math. at the service of man. Barcelona.

11 Gnedenko, B. and Kolmogorov, A. (1954). Limit distributions for sums of independent random variables. Addison-Wesley, Cam-bridge, Mass. | MR | Zbl

12 Hoffmann-Jorgensen, J. and Pisier, G. (1976). The law of large numbers and the central limit theorem in Banach spaces. Ann. Probability 4587-599. | MR | Zbl

13 Le Cam, L. (1965). On the distribution of sums of independent random variables. Pernoulli, Bayes, Laplace (Proceedings of a a Seminar), 179-202. Springer-Verlag, Perlin and New York. | MR | Zbl

14 Le Cam, L. (1970). Remarques sur le théorème limite centrale dans les spaces localement convexes. Les probabilités sur les structures algébriques, 233, 249. CNRS, Paris. | MR | Zbl

15 Maurey, B. et Pisier, G. (1976). Séries de variables aleatoires vectorielles independentes et proprietés géometriques des spaces de Banach. Studia Math. 5845-90. | MR | Zbl

16 Parthasarathy, K.R. (1967). Probability measures on metric spaces. Academic Press, New York. | MR | Zbl

17 Varadhan, S.R.S. (1962). Limit theorems for sums of independent random variables with values in a Hilbert space. Sankhya 24 213-238. | MR | Zbl

18 Woyczinski, W. (1977). Geometry and martingales in Banach spaces, Part II: independent increments. Advances in Probability, Vol. IV. (To appear).