
Séminaire d’analyse fonctionnelle
École Polytechnique

A. PEŁCZYNSKI
On a result of Olevskiı̌ : a uniformly bounded orthonormal
sequence is not a basis for C[0,1]

Séminaire d’analyse fonctionnelle (Polytechnique) (1973-1974), exp. no 21, p. 1-14
<http://www.numdam.org/item?id=SAF_1973-1974____A23_0>

© Séminaire Maurey-Schwartz
(École Polytechnique), 1973-1974, tous droits réservés.

L’accès aux archives du séminaire d’analyse fonctionnelle implique l’accord avec les
conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation com-
merciale ou impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SAF_1973-1974____A23_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


S E M I N A I R E M A U R E Y - S C H W A R T Z 1 9 7 3 - 1 9 7 4

ON A RESULT OF OLEVSKI~ : A UNIFORMLY BOUNDED

ORTHONORMAL SEQUENCE IS NOT A BASIS FOR C[0,1]

by A. PE0142CZYNSKI

~COLE POLYTECHNIQUE
CENTRE DE MATHEMATIQUES

rue Descartes

75230 Paris Cedex 05

Exposé N0 XXI 24 Avril 1974





XXI.1

The purpose of this lecture is to present a result of Olevskil (Iz-
vestia Akad Nauk SSSR, volume 30 (1965)9 387 - 432) that there is no uni-

formly bounded orthonormal system which is a basis for the space C of

all continuous functions on the interval rO,1J and to explain the relation

of this result with the conjecture of the non existence of normalized

Besselian bases in C.

Definition : A biorthogonal system in a Banach space E, in par-
n n

ticular a basis, is said to be Besselian (Hilbertian) if there exists

a constant K &#x3E; 0 such that for each x E E

Example : A uniformly bounded in Loo-norm orthonormal system in L2 is
00

a Besselian biorthogonal system in L .

Indeed is an orthonormal system in L2 such thatYn
co

al l n then f or x E L we have

Conjecture : There is no Besselian basis in as well as there is no

Hilbertian basis in L1.

The following result of Olevski (1966) strongly support this con-

jecture.
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Theorem 1 : Let v be a probability measure on [0, 1], Let (cp ) ba a uni-L. i 
n

formly bounded orthonormal (with respect to v) system in C[0,1]. Then (y )n
is not a basis for 

Before passing to the proof of Theorem 1 we shall establish a general

fact on Besselian biorthogonal systems in C[0, 1] which is trivial for
orthonormal systems but which shows some relation between the theorem

and the conjecture.

Proposition 1 : Let be a Besselian biorthogonal system in C.
n n

Assume that (vn) is total, 0 for all n implies x= 0, and
n 1 II II 

n

Then there exists a probability measure v on [0,1] and g 
such that d~ for all x E C and for all n and

for all n where K is the constant appea-

ring in the definition Besselian basis and K- is a universal (Gro-

thendieck) constant.

Proof : Define T : T(x) = (pn(x)) . Since (enpn ) is a Bes-

selian biorthogonal system and ))e n 11 ~ M-1 for all n, T is continuous

and KM . Thus, by a result of Grothendieck, T is 2-integral.

Hence, by Grothendieck Pietsch factorization theorem, there exists a

probability measure v on CO, 11 such that T= AI where I : C ~ L2(,w)
is the natural embedding and A : L 2 -~ 12is a bounded linear opera-
tor with KG K M. 

2" We have for Let 6 
n 

denote the n-th unit vector in 1 We have for 

where Hence
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Thus

,ince I . C is dense in and T is one to one because is total

L is one to one. Hence I e = A- 6 . * Thus 
w n n

Our next proposition indicates the strategy of the proof of Theorem 1.

Proposition 2 : Let M &#x3E; 0. Let (en pn) be a Besselian biorthogonal sys---- 

_ 1 II II 
n n

Assume that

(*) for every sequence (c ) of scalars the condition
n

Then (e ) is not a basis for C.
n

Proof : If (~ ) is not total then (e ) is not a basis. Assume now that
2013201320132013 n n

(03BC) is total. Let v and gn have the same meaning as in Proposition 1.
n n

Assume to the contrary that (e ) is a basis. Then
n

Hence for all t E[0,11 :
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Let us note that

Thus for all 

Hence, by ()),

for all t e [0, 1].

Thus, by the Lebesgue theorem,

On the other hand, by Proposition 1, there exists 6&#x3E;0 such that

a contradiction.

Note that if (y ) is an orthonormal (in L2(~)) system then
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and

Hence Theorem 1 is an immediate consequence of Proposition 1 and the

following crucial result.

Theorem 2 : Let v be a probability measure on ~~,1 ~ . Let (yn ) be a

uniformly bounded (in orthonormal (in system Then for

every sequence of scalars (c ) the condition
n

implies

For the proof of Theorem 2 we shall need two lemmas.

Lemma 1 : : Let (a ) be a sequence of real numbers such that 0  a  K
201320132013201320132013 n 

" 

n

for all n and

Then for every N there exists indices m and k such that

Proof : Let P be an integer. Pick M so that

Let M  p + r with 0  r  Let M= Npq+r with 0!5;rN .
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Then

Now consider the

for : 1

If for all w with we put and m = 1

and we have N consecutive blocks satisfying the assertion of the lemma.

If not the inequality yields the exis-

tence of an index w 1 with N such that

We divide the block B1 
q 

into N consecutive blocks each of length
v1

then we already have the desired division into N

consecutive blocks. If not we infer that there exists an index -o 2 such
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and we repeat the same procedure.

If we repeat the procedure p times we finally get a block Bp of length
0 v

Since (for any block of length q)

which for p large

enough is impossible. That means that in some earlier step we must get

the desired division into N consecutive blocks.

Lemma 2 : Let a measurable function f satisfies the conditions

Then

Proof :

Hence
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Proof of Theorem 2 : Assume to the contrary that there exists a sequence

of scalars ( c . ) such that
J

Hence for all

Now fix a constant C so large that

v
Take v large enough and let N= vv. By lemma 2, there exist m and k

such that

We shall define by induction the sequence (i ) of the indices

such that if 
s 

then the following conditions are satisfied

Clearly having done this we get a contradiction because (2) in particular
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implies that while

Hence large enough is impossible.

Then

We also have

and

Thus, by lemma 2,

Thus

Since



XXI.10

This completes the first step of induction.

Now assume that for some s ~ v-1 the index i has been defined to
s

satisfy the conditions (1) and (2). Let us set

We put

Clearly ;

To complete the proof we have to check (2). Let us consider separately

two cases:

we get (by inductive hypothesis)

2) bs  P. Let us set

Then
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We also have

and

Then, by lemma 2,

Let us set

We f irst show that

If a) t EE then
s

for v large enough
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On the other hand

Thus

Now we separately estimate from below the integrals

We have

Thus using the inductive hypothesis we get

Since s  v, for v large enough (precisely for we have

Hence

Now we estimate the second integral

The inclusion yields
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Thus our last aim is to estimate from below the mea- ire of W . We have
s

We have

thus

Similarly

thus using the assumption 6 p, ’ we have

Therefore

Hence
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Thus for v large enough (remembering that we get

Hence


