SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

A. PEŁCZYNSKI
On a result of Olevskiǐ : a uniformly bounded orthonormal sequence is not a basis for $C[0,1]$
Séminaire d'analyse fonctionnelle (Polytechnique) (1973-1974), exp. nº 21, p. 1-14
<http://www.numdam.org/item?id=SAF_1973-1974
\qquad A23_0>

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ECOLE POLYTECHNIque
CENTRE DE MATHEMATIOUES
17, rue Descartes
75230 Paris Cedex 05

S E M I N A I RE M A U REY-S C H W A R T Z 1973 - 1974

by A. PEZCZYNSKI

The purpose of this lecture is to present a result of olevskiy (Izvestia Akad Nauk SSSR, volume 30 (1966), 387 - 432) that there is no uniformly bounded orthonormal system which is a basis for the space C of all continuous functions on the interval $[0,1]$ and to explain the relation of this result with the conjecture of the non existence of normalized Besselian bases in C.

Definition : A biorthogonal system (e_{n}, μ_{n}) in a Banach space E, in particular a basis, is said to be Besselian (Hilbertian) if there exists a constant $K>0$ such that for each $x \in E$

$$
\begin{aligned}
& \|x\| \geq K\left(\sum_{n=1}^{\infty}\left(\mu_{n}(x)\left\|e_{n}\right\|\right)^{2}\right)^{1 / 2} \\
& \quad\left(\operatorname{resp} .\|x\| \leq K\left(\sum_{n=1}^{\infty}\left(\mu_{n}(x)\left\|e_{n}\right\|^{2}\right)\right.\right.
\end{aligned}
$$

Example : A uniformly bounded in L^{∞}-norm orthonormal system in L^{2} is a Besselian biorthogonal system in L^{∞}. Indeed if $\left(\varphi_{n}\right)$ is an orthonormal system in L^{2} such that $\left\|\varphi_{n}\right\|_{\infty} \leq M$ for all n then for $x \in L^{\infty}$ we have

$$
\|x\|_{\infty} \geq\|x\|_{2} \geq \sqrt{\sum_{n}\left[\int x(t) \varphi_{n}(t) d t\right]^{2}} \geq \frac{1}{M} \sqrt{\sum\left(\left[\int x(t) \varphi_{n}(t) d t\right]\left\|\varphi_{n}\right\|_{\infty}\right)^{2}}
$$

Conjecture : There is no Besselian basis in $C[0,1]$ as well as there is no Hilbertian basis in \mathbf{L}^{1}.

The foilowing result of Olevskil (1966) strongly support this conjecture.

Theorem 1 : Let ψ be a probability measure on $[0,1]$. Let (φ_{n}) ba a uniformly bounded orthonormal (with respect to ψ) system in $C[0,1]$. Then (φ_{n}) is not a basis for $C[0,1]$.
Before passing to the proof of Theorem 1 we shall establish a general fact on Besselian biorthogonal systems in $C[0,1]$ which is trivial for orthonormal systems but which shows some relation between the theorem and the conjecture.

Proposition 1 : Let $\left(e_{n}, \mu_{n}\right)$ be a Besselian biorthogonal system in C. Assume that $\left(\mu_{n}\right)$ is total, i.e. $\mu_{n}(x)=0$ for all n implies $x=0$, and let for some $M>0, M^{-1} \leq\left\|e_{n}\right\| \leq M$ for all n.

Then there exists a probability measure ψ on $[0,1]$ and $g_{n} \in L^{2}(\psi)$ such that $\mu_{n}(x)=\int_{0}^{1} x(t) g_{n}(t) d \psi$ for all $x \in C$ and for all n and

$$
M^{-1} \leq \int_{0}^{1}\left|g_{n}(t)\right| d \psi \leq \sqrt{\int_{0}^{1}\left|g_{n}(t)\right|^{2} d \psi} \leq K_{G} K M
$$

and $\left(\int_{0}^{1}\left|e_{n}(t)\right|^{2} d \psi\right)^{1 / 2} \geq \frac{1}{K_{G} K M}$ for all n where K is the constant appearing in the definition of ${ }^{0}{ }^{\prime}$ Besselian basis and K_{G} is a universal (Grothendieck) constant.

Proof : Define $T: C \rightarrow l^{2}$ by $T(x)=\left(\mu_{n}(x)\right)$. Since ($\left.e_{n}, \mu_{n}\right)$ is a Besselian biorthogonal system and $\left\|e_{n}\right\| \geq M^{-1}$ for all n, T is continuous and $\|T\| \leq K M$. Thus, by a result of Grothendieck, T is 2-integral. Hence, by Grothendieck Pietsch factorization theorem, there exists a probability measure ψ on $[0,1]$ such that $T=A I_{\psi}$ where $I_{\psi}: C \rightarrow L^{2}(\psi)$ is the natural embedding and $A: L^{2}(\psi) \rightarrow 1^{2}$ is a bounded linear operator with $\|A\| \leq K_{G} K M$.
Let δ_{n} denote the $n-t h$ unit vector in l^{2}. We have for $x \in C[0,1]$

$$
\mu_{n}(x)=\left\langle T x, \delta_{n}\right\rangle_{1}=\left\langle I_{\psi} x, A^{*} \delta_{n}\right\rangle_{L^{2}(\psi)}=\int_{0}^{1} x(t) y_{n}(t) d \psi
$$

where $g_{n}=A^{*} \delta_{n} \in L^{2}(\psi)$. Hence $\mu_{n}=g_{n} d \psi$.

Thus

$$
\frac{1}{M}=\frac{1}{M} \mu_{n}\left(e_{n}\right) \leq\left\|\mu_{n}\right\|=\int\left|g_{n}(t)\right| d \leq \sqrt{\left|g_{n}(t)\right|^{2} d} \leq\|A\| .
$$

Since $I_{\psi} C$ is dense in $L^{2}(\psi)$ and T is one to one because $\left(\mu_{n}\right)$ is total, A is one to one. Hence $I_{w} e_{n}=A^{-1} \delta_{n}$. Thus

$$
\sqrt{\int_{0}^{1}\left|e_{n}(t)\right|^{2} d \downarrow} \geq \frac{1}{\|A\|^{1} T}\left(e_{n}\right)=\frac{1}{\| A} \| .
$$

Our next proposition indicates the strategy of the proof of Theorem 1.

Proposition 2 : Let $M>0$. Let (e_{n}, μ_{n}) be a Besselian biorthogonal system in C with $M^{-1} \leq\left\|e_{n}\right\| \leq M$ for all n.
Assume that
(*) for every sequence (c_{n}) of scalars the condition

$$
\sup _{N}\left\|\sum_{n=1}^{N} c_{n} \mu_{n}\right\|<\infty \quad \text { implies } \quad \lim _{N} \frac{1}{N} \sum_{n=1}^{N} c_{n}^{2}=0
$$

Then (e_{n}) is not a basis for C.

Proof : If (μ_{n}) is not total then (e_{n}) is not a basis. Assume now that $\left(\mu_{n}\right)$ is total. Let \downarrow and g_{n} have the same meaning as in Proposition 1. Assume to the contrary that $\left(e_{n}\right)$ is a basis. Then

$$
\sup _{N} \sup _{\|x\|=1}\left\|\sum_{n=1}^{N} \mu_{n}(x) e_{n}\right\|=L<\infty .
$$

Hence for all $t \in[0,1]$:

$$
\sup _{N} \sup _{\|x\|=1}\left|\sum_{n=1}^{N} \mu_{n}(x) e_{n}(t)\right| \leq L
$$

Let us note that

$$
\begin{aligned}
\sup _{x \|=1}\left|\sum_{n=1}^{N} \mu_{n}(x) e_{n}(t)\right| & =\| \sup _{\|x\|=1}\left|\left(\sum_{n=1}^{N} e_{n}(t) \mu_{n}\right)(x)\right| \\
& =\left\|\sum_{n=1}^{N} e_{n}(t) \mu_{n}\right\| .
\end{aligned}
$$

Thus for all $t \in[0,1]$

$$
\sup _{N}\left\|\sum_{n=1}^{N} e_{n}(t) \mu_{n}\right\| \leq L
$$

Hence, by (*),

$$
\lim _{N} \frac{1}{N} \sum_{n=1}^{N}\left[e_{n}(t)\right]^{2}=0
$$

for all $t \in[0,1]$.

Thus, by the Lebesgue theorem,

$$
0=\underset{N}{\lim } \int_{0}^{1} \frac{1}{N} \sum_{n=1}^{N} e_{n}^{2}(t) d \psi=\lim _{N} \sum_{n=1}^{N} \int_{0}^{1} e_{n}^{2}(t) d \omega .
$$

On the other hand, by Proposition 1, there exists $\delta>0$ such that $\int_{0}^{1} e_{n}^{2}(t) d \omega \geq \delta$ for all n. Thus

$$
\frac{\lim }{N} \frac{1}{N} \sum_{n=1}^{N} \int_{0}^{1} e_{n}^{2}(t) d t \quad z \delta
$$

a contradiction.
Note that if $\left(\varphi_{n}\right)$ is an orthonormal $\left(i n L^{2}(\nu)\right)$ system then

$$
\mu_{n}(x)=\int_{0}^{1} x(t) \overline{\varphi_{n}(t)} d \psi
$$

and

$$
\left\|\sum_{n=1}^{N} c_{n} \mu_{n}\right\|=\int_{0}^{1}\left|\sum_{n=1}^{N} c_{n} \varphi_{n}(t)\right| d \nu .
$$

Hence Theorem 1 is an immediate consequence of Proposition 1 and the following crucial result.

Theorem 2 : Let \downarrow be a probability measure on $[0,1]$. Let (φ_{n}) be a uniformly bounded (in $L^{\infty}(\psi)$) orthonormal (in $L^{2}(\psi)$) system. Then for every sequence of scalars $\left(c_{n}\right)$ the condition

$$
\sup _{N} \int_{0}^{1}\left|\sum_{n=1}^{N} c_{n} \varphi_{n}(t)\right| d \psi=L<\infty
$$

implies

$$
\lim _{N} \frac{1}{N} \sum_{n=1}^{N}\left|c_{n}\right|^{2}=0
$$

For the proof of Theorem 2 we shall need two lemmas.

Lemma 1 : Let $\left(a_{n}\right)$ be a sequence of real numbers such that $0<a_{n}<K$ for all n and

$$
\overline{\lim } \frac{1}{n} \sum_{j=1}^{n} a_{j}>\alpha>0
$$

Then for every N there exists indices m and k such that

$$
\frac{1}{k} \sum_{j=m+k(r-1)+1}^{m+k r} a_{j}>\frac{\alpha}{2} \quad \text { for } r=1,2, \ldots, N
$$

$\underline{\text { Proof }}:$ Let ρ be an integer. Pick M so that $K N^{\rho}<M \frac{\alpha}{4}$ and $\frac{1}{M} \sum_{j=1}^{M} a_{j}>\alpha$. Let $M=N^{\rho} q+r$ with $0 \leq r<N^{\rho}$.

Then

$$
\begin{aligned}
\frac{1}{N_{q}^{\rho}} \sum_{j=1}^{N_{q}^{\rho}} a_{j} & =\frac{M}{N_{q}^{\rho}} \frac{1}{M} \sum_{j=1}^{M} a_{j}-\frac{1}{N^{\rho} q} \sum_{j=N^{\rho} q_{+1}}^{M} a_{j} \\
& \geq \frac{M}{N^{\rho} q_{q}} \alpha-\frac{1}{N^{\rho} q_{q}} K N^{\rho} \\
& >\frac{M}{N^{\rho} q} \alpha-\frac{M}{N^{\rho} q_{q}} \frac{\alpha}{4} \\
& \geq \frac{3}{4} \alpha .
\end{aligned}
$$

Now consider the "blocks" $B_{\psi}^{1}=\left(a_{j}\right)_{N}^{\rho-1}{ }_{q(\psi-1)+1} \leq j<N^{\rho-1} q^{\rho} \downarrow$ for $1 \leq \psi \leq N$ and let $\left|B_{\psi}^{1}\right|=\sum_{j=N^{\rho-1}}^{\sum_{q(\psi-1)+1}^{\rho}} a_{j}$.

If for all with $1 \leq \psi \leq N,\left|B_{\psi}^{1}\right|>N^{\rho-1} q \frac{\alpha}{2}$ we put $k=N^{\rho-1} q$ and $m=1$ and we have N consecutive blocks satisfying the assertion of the lemma. If not the inequality $\frac{1}{N} \sum_{\nabla=1}^{N}\left|B_{\psi}^{1}\right|=\frac{1}{N^{\rho}{ }_{q}} \sum_{j=1}^{N^{\rho} q} \quad a_{j}>\frac{3}{4} \alpha$ yields the existence of an index w_{1} with $1 \leq w_{1} \leq N$ such that

$$
\left|B_{v_{1}}^{1}\right|>\frac{3}{4} \alpha \frac{N-\frac{2}{3}}{N-1} \quad N^{\rho-1} q
$$

We divide the block $B_{\psi_{1}}^{1}$ into N consecutive blocks each of length $N^{\rho-3}{ }_{q}$, say $\mathrm{B}_{1}^{2}, \mathrm{~B}_{2}^{2}, \ldots, \mathrm{~B}_{\mathrm{N}}^{2}$.

If $\left|B_{w}^{2}\right|>\frac{1}{2} \alpha \frac{N-\frac{2}{3}}{N-1}>\frac{\alpha}{2}$ then we already have the desired division into N consecueive blocks. If not we infer that there exists an index ${ }_{2}$ such
XXI. 7
that $\left|B_{\nu_{2}}^{2}\right|>\frac{3}{4} \alpha\left(\frac{N-\frac{2}{3}}{N-1}\right)^{2} \quad N^{\rho-2} q$ and we repeat the same procedure. If we repeat the procedure ρ times we finally get a block $B_{\psi_{\rho}}^{\rho}$ of length q such that $\left|B_{\psi_{\rho}}^{\rho}\right|>\frac{3}{4} \alpha\left(\frac{N-\frac{2}{3}}{N-1}\right)^{\rho} q$. Since (for any block of length q) we have $\left|B_{\psi_{\rho}}^{\rho}\right| \leq K q$ we infer that $K>\frac{3}{4} \alpha\left(\frac{N-\frac{2}{3}}{N-1}\right)^{\rho}$ which for ρ large enough is impossible. That means that in some earl id step we must get the desired division into N consecutive blocks.

Lemma 2: Let a measurable function f satisfies the conditions

$$
\begin{aligned}
& |f(t)| \leq c n \text { for } t \in[0,1] \\
& \int_{0}^{1}|f(t)|^{2} d \psi \geq \frac{n}{c} \\
& \int_{0}^{1}|f(t)| d \psi \leq c
\end{aligned}
$$

Then

$$
\psi\left\{|f|>\frac{n}{c^{3}}\right\} \geq \frac{1}{n} \frac{c-1}{c^{4}}
$$

Proof:

$$
\begin{aligned}
\int|f|^{2} d \psi & \int|f|^{2} d \psi \\
\left\{|f| \geq \frac{n}{C^{3}}\right\} & \left\{|f|<\frac{n}{C^{3}}\right\} \\
& \leq n^{2} c^{2} \psi\left\{|f|>\frac{n}{c^{3}}\right\}+\frac{n}{c^{3}} \int|f| d \psi \\
& \leq n c^{2} \psi\left\{|f| \geq \frac{n}{c^{3}}\right\}+\frac{n}{c^{3}} c
\end{aligned}
$$

Hence

$$
\left(\frac{n}{c}-\frac{n}{c^{2}}\right) \frac{1}{n^{2} c^{2}}=\frac{c-1}{n c^{4}} \leq \psi\left\{|f| \geq \frac{n}{c^{3}}\right\}
$$

Proof of Theorem 2 : Assume to the contrary that there exists a sequence of scalars $\left(c_{j}\right)$ such that

$$
\sup _{\mathrm{n}} \int_{0}^{1}\left|\sum_{j=1}^{n} c_{j} \varphi_{j}(t)\right| d \psi=M_{1}<+\infty \quad \text { and } \overline{\operatorname{1im}} \frac{1}{n} \sum_{j=1}^{n}\left|c_{j}\right|^{2}=\alpha>0 .
$$

Let $\sup _{j}\left\|\varphi_{j}\right\|_{\infty}=M_{2} . \operatorname{Then} 1=\int_{0}^{1}\left|\varphi_{j}(t)\right|^{2} d \nu \leq M_{2} \int_{0}^{1}\left|\varphi_{j}(t)\right| d \omega$.

Hence for all $j\left|c_{j}\right| \int_{0}^{1}\left|\varphi_{j}(t)\right| d \boldsymbol{d} \leq 2 M_{1}$ and $\sup _{j}\left|c_{j}\right| \leq 2 M_{1} M_{2}$.

Now fix a constant C so large that

$$
\mathrm{C} \alpha>2, \mathrm{C}>2, \mathrm{C}>2 \mathrm{M}, \mathrm{C}>\left(2 \mathrm{M}_{1} \mathrm{M}_{2}\right)^{2} .
$$

Take v large enough and let $N=v^{\mathbf{v}}$. By lemma 2, there exist m and k such that

$$
\sum_{j=m+k(r-1)+1}^{m+k r}\left|c_{j}\right|^{2} \geq \frac{\alpha}{2} k \quad \text { for } 1 \leq j \leq v^{v} .
$$

We shall define by induction the sequence ($\left.\mathrm{i}_{\mathrm{s}}\right)_{1 \leq s \leq v}$ of the indices such that if

$$
\mathbf{f}_{\mathbf{s}}=\sum_{\mathbf{j}=\mathbf{m + 1}}^{\mathbf{m}+\mathbf{k} \mathbf{i}_{\mathbf{s}}} \mathbf{c}_{\mathbf{j}} \varphi_{\mathbf{j}}, \quad \mathbf{E}_{\mathbf{s}}=\left\{\left|\mathbf{f}_{\mathbf{s}}\right| \geq \frac{\mathbf{k} \mathbf{v}^{\mathbf{v}-\mathbf{s}}}{2 \mathbf{c}^{3}}\right\}
$$

then the following conditions are satisfied
(1) $\quad 1 \leq i_{s} \leq \frac{\mathbf{v}^{\mathbf{v}}-\mathbf{v}^{\mathbf{v}-\mathbf{s}}}{\mathbf{v - 1}}$

$$
\begin{equation*}
\int_{E_{s}}\left|f_{s}(t)\right| d \psi \geq s^{1 / 2} \beta \text { where } \beta=\frac{C-1}{16 C^{7}} \text { for } s=1,2, \ldots, \downarrow \text {. } \tag{2}
\end{equation*}
$$

Clearly having done this we get a contradiction because (2) in particular
implies that $\int_{0}^{1}\left|f_{v}(t)\right| d v \geq v^{1 / 2} \beta$ while

$$
\int_{0}^{1}\left|f_{v}(t)\right| d w \leq \int_{0}^{1}\left|\sum_{j=1}^{m} c_{j} \varphi_{j}(t)\right| d \psi+\int_{0}^{1}\left|\sum_{j=1}^{m+k} \sum_{j}{ }_{j} \varphi_{j}(t)\right| d \psi<c
$$

Hence $v<\left(\frac{2 C}{\beta}\right)^{2}$ which for v large enough is impossible.
The construction of $\left(i_{s}\right){ }_{1 \leq s \leq v}$: Let us set $i_{1}=v^{v-1}$.
Then

$$
\begin{aligned}
\int_{0}^{1}\left|f_{1}(t)\right|^{2} d \psi & =\sum_{j=m+1}^{m+k i_{1}}\left|c_{j}\right|^{2}=\sum_{j=1}^{i_{1}} \sum_{j=m+k(r-1)+1}^{m+k r}\left|c_{j}\right|^{2} \\
& \geq \frac{\alpha}{2} k i_{1}=\frac{\alpha}{2} k v^{v-1}>\frac{1}{C} k v^{v-1} .
\end{aligned}
$$

We also have

$$
\int_{0}^{1}\left|f_{1}(t)\right| d \psi<C,
$$

and

$$
\sup _{t \in[0,1]}\left|f_{1}(t)\right| \leq k v^{v-1}\left(2 M_{1} M_{2}\right)^{2} \leq C k v^{v-1} .
$$

Thus, by lemma 2 ,

$$
\psi\left(\left|f_{1}\right|>\frac{k v^{v-1}}{C^{3}} \geq \frac{\mathrm{C}-1}{k^{v-1} c^{4}}\right.
$$

Thus

$$
\begin{aligned}
& \int\left|f_{1}\right| d w \geq \frac{k^{v-1}}{C^{3}} \frac{c-1}{k v^{v-1} C^{4}}=\frac{c-1}{C^{7}}>\beta . \\
& \left\{\left|f_{1}\right| \geqslant \frac{k v^{v-1}}{C^{3}}\right\}
\end{aligned}
$$

Since $\quad E_{1} \subset\left\{\left|f_{1}\right|>\frac{k v^{v-1}}{C^{3}}\right\}$, we get $\int_{E_{1}}\left|f_{1}\right| d \downarrow>\beta$.

This completes the first step of induction.

Now assume that for some $s \leq v-1$ the index i_{s} has been defined to satisfy the conditions (1) and (2). Let us set

$$
U_{s}=\left\{\frac{\mathbf{k v}^{v-s-1}}{2 C^{3}} \leq\left|f_{s}\right|<\frac{\mathbf{k v}^{v-s}}{2 C^{3}}\right\} \quad, \quad \int_{U_{s}} f_{s}(t) d \psi=\delta_{s}
$$

We put

$$
i_{s+1}=\left\{\begin{array}{l}
i_{s} \quad \text { if } \delta_{s} \geq \beta \\
i_{s}+v \\
v-s-1 \\
\text { if } \delta_{s}<\beta
\end{array}\right.
$$

Clearly $1 \leq i_{s+1} \leq i_{s}+v^{v-s-1} \leq \frac{v-v^{v-s}}{v-1}+v^{v-s-1}=\frac{v-v^{v-s-1}}{v-1}$.

To complete the proof we have to check (2). Let us consider separately two cases:

1) $\delta_{s} \geq \beta$. Then $\mathbf{f}_{s+1}=\mathbf{f}_{\mathbf{S}}$ and $E_{s+1}=E_{s} \cup \mathcal{U}_{s}$. Since $\mathcal{U}_{s} \cap E_{s}=\varnothing$, we get (by inductive hypothesis)

$$
\int_{E_{s+1}}\left|f_{s+1}\right| d \psi=\int_{E_{s}}\left|f_{s}\right| d \psi+\int_{u_{s}}\left|f_{s}\right| d \psi=s^{\frac{1}{2}} \beta+\beta>(s+1)^{\frac{1}{2}} \beta
$$

2) $\delta_{s}<\beta$. Let us set

$$
F_{s}=\sum_{j=m+i_{s} k+1}^{m+i_{s+1} k} c_{j} \varphi_{j}
$$

Then

$$
\begin{aligned}
& \geq \frac{\alpha}{2} k\left(i_{s+1}-i_{s}\right)=\frac{\alpha}{2} \mathrm{k}^{\mathrm{v}-\mathrm{s}-1}>\mathrm{Ck}^{\mathrm{v}-\mathrm{s}-1} .
\end{aligned}
$$

XXI. 11

We also have

$$
\int_{0}^{1}\left|F_{S}\right| d \psi<C
$$

and

$$
\sup _{t \in[0,1]}\left|F_{s}(t)\right| \leqslant k^{v-s-1}\left(2 M_{1} M_{2}\right)^{2} \leq C k v^{v-s-1} .
$$

Let $\mathbf{v}_{\mathbf{s}}=\left\{\left|\mathbf{F}_{\mathbf{s}}\right| \geq \frac{\mathbf{k ~}^{\mathbf{v}-\mathbf{s}-1}}{\mathrm{C}^{3}}\right\}$.
Then, by lemma 2 ,

$$
w\left(v_{s}\right) \geq \frac{C-1}{C^{4} \mathbf{k}^{v-s-1}} .
$$

Let us set $E_{s}^{\prime}=V_{s} \cap E_{s}$

$$
\begin{gathered}
u_{s}^{\prime}=v_{s} \cap u_{s} \\
w_{s}=v_{s} \backslash\left(E_{s}^{\prime} \cup u_{s}^{\prime}\right)
\end{gathered}
$$

Clearly $U_{s} \cap E_{s}=\varnothing, w_{s} \cap E_{s}=\varnothing, w_{s} \cap U_{s}=\varnothing$.
We first show that $E_{s} \cup W_{s} \subset E_{s+1}$.
If a) $t \in E_{s}$ then

$$
\begin{aligned}
\left|f_{s+1}(t)\right| \geq\left|f_{s}(t)\right|-\left|F_{S}(t)\right| & \geq \frac{k \mathbf{v}^{v-s}}{2 C^{3}}-C k v^{v-s-1}=\frac{k v^{v-s-1}}{2 C^{3}}\left(v-2 C^{4}\right) \\
& >\frac{k \mathbf{v}^{v-s-1}}{2 C^{3}}
\end{aligned}
$$

for v large enough $\left(v>C^{5}\right)$ 。
b) $t \in W_{s}$ then $t \notin E_{s}$ and $t \notin U_{s}$, that means that $t \in\left\{\left|f_{s}\right|<\frac{k v^{v-s-1}}{2 c^{3}}\right\}$.

On the other hand $t \in v_{s}=\left\{\left|F_{s}\right| \geq \frac{k^{v-s-1}}{c^{3}}\right\}$.

Thus

$$
\left|f_{s+1}(t)\right|=\left|F_{s}(t)\right|-\left|f_{s}(t)\right| \geq \frac{k v^{v-s-1}}{2 c^{3}}
$$

Now we separately estimate from below the integrals $\int_{E_{S}}\left|f_{s+1}\right| d \rrbracket$ and $\int_{W_{s}}\left|f_{s+1}\right| d v$. We have for $t \in E_{s}$,

$$
\begin{aligned}
\left|f_{s+1}(t)\right| & \geq\left|f_{s}(t)\right|-\left|F_{s}(t)\right| \geq\left|f_{s}(t)\right|-C k v^{v-s-1} \\
& =\left|f_{s}(t)\right|-\frac{k v^{v-s}}{2 C^{3}} \frac{2 C^{4}}{v} \geq\left|f_{s}(t)\right|\left(1-\frac{2 C^{4}}{v}\right)
\end{aligned}
$$

Thus using the inductive hypothesis we get

$$
\int_{E_{S}}\left|f_{s}(t)\right| d \psi \geq\left[1-\frac{2 C^{4}}{v}\right] \quad \int_{E_{S}}\left|f_{s}(t)\right| d \psi \geq \beta s^{1 / 2}\left(1-\frac{2 C^{4}}{v}\right)
$$

Since $s<v$, for v large enough (precisely for $v>C^{10}>\left(2 C^{4}\right)^{2}$) we have

$$
\hat{\rho} s^{1 \cdot 2}\left(1-\frac{2 C^{4}}{v} \geq \beta\left(s^{1 / 2}-1\right)\right.
$$

Hence

$$
\int_{E_{s}}\left|f_{s}(t)\right| d \psi \geq \beta\left(s^{1 / 2}-1\right)
$$

Now we estimate the second integral $\int_{W_{s}}\left|f_{s}(t)\right| d \psi$. The inclusion $W_{s} \subset E_{s+1}$ yields

$$
\int_{W_{s}}\left|f_{s+1}(t)\right| d \psi z \frac{k v^{v-s-1}}{2 C^{3}} \psi\left(W_{s}\right)
$$

XXI. 13

Thus our last aim is to estimate from below the meas: re of W_{S}. We have

$$
\begin{aligned}
\psi\left(W_{S}\right) & \geq \psi\left(V_{S}\right)-\psi\left(E_{S}^{\prime}\right)-\psi\left(U_{S}^{\prime}\right) \\
& \geq \psi\left(V_{S}\right)-\psi\left(E_{S}\right)-\psi\left(U_{S}\right) \\
& \geq \frac{C-1}{C^{4} k^{v-s-1}}-\psi\left(E_{S}\right)-\psi\left(U_{S}\right)
\end{aligned}
$$

We have

$$
C \geq \int_{0}^{1}\left|f_{S}(t)\right| d \psi \geq \int_{E_{S}}\left|f_{S}(t)\right| d \psi \geq \psi\left(E_{S}\right) \frac{k v^{v-s}}{2 C^{3}}
$$

thus

$$
\nu\left(E_{s}\right) \geq \frac{2 C^{4}}{k v^{v-s}}
$$

Similarly

$$
\delta_{s}=\int_{U_{s}}\left|f_{s}(t)\right| d \psi \geq w\left(U_{s}\right) \frac{k v^{v-s-1}}{2 C^{3}}
$$

thus using the assumption tat $\delta_{s} ; \beta$, we have

$$
\psi\left(\mathcal{U}_{s}\right) \leq \frac{\delta_{s}}{\frac{k v^{v-s-1}}{2 C^{3}}}<\frac{2 C^{3} \beta}{k v^{v-s-1}}
$$

Therefore

$$
\psi\left(W_{s}\right) \geq \frac{1}{k v^{v-s-1}}\left(\frac{C-1}{C^{4}}-\frac{2 C^{4}}{v}-2 \beta C^{3}\right)
$$

Hence

$$
\int_{W_{S}}\left|f_{s+1}(t)\right| d \psi \geq \frac{1}{2 C^{3}}\left(\frac{C-1}{C^{4}}-\frac{2 c^{4}}{v}-2 \beta C^{3}\right)
$$

Thus for v large en ugh (remembering that $\beta=\frac{C-1}{16 C^{7}}$) we get

$$
\int_{W_{s}}\left|f_{s+1}(t)\right| d \psi \geq 2 \beta
$$

Hence

$$
\begin{aligned}
\int_{E_{s+1}}\left|f_{s+1}(t)\right| d \psi & \geq \int_{E_{s}}\left|f_{s+1}(t)\right| d \psi+\int_{W_{S}}\left|f_{s+1}(t)\right| d w \geq s^{1 / 2} z_{\beta+\beta} \\
& \geq(s+1)^{1 / 2}{ }_{\beta} .
\end{aligned}
$$

$$
_{}^{*}{ }^{*}
$$

