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Abstract.

1) Tn every separable Banach space X a biorthogonal sequence
*(x ,x ) is constructed such that linear combinations of the xl s are
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n

dense in X, for every x in X if x (x) 0 for all n then x = 0 and

 CJ , 

n

n 11
11

2) Linear subspacps of which admit an orthonormal

basis consisting of uniformly bounded functions are characteri-zed.
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The present paper consists of three sections.

In the first one using a trick invented by Olevskii (~9~ Lemmas 3

and 4) we prove

Theorem 1 : In every separable Banach space X there exists a fundamental
*

and total biorthogonal sequence (x ,xn) such that
n n

*
Recall that a sequence of pairs consisting of elements of

n n
a Banach space X and bounded linear functionals on X, i.e. elements

of’ X - the dual of X is said to be biorthogonal if x*(x ) = am for
~ 

n m n

n,m = 1,2,... A biorthogonal sequence (x ,x ) is fundamental if linear
n n

combinations of the v:’s are dense in X, and is total if the condition
-M- 

-.L

x*n(x) = 0 for n = 1,2, ... implies that 

Theorem 1 answers a question of Banach ([1J, p.238). A slightly

weaker result has been previously obtained by Davis and Johnson [4].

The main result of the second section is

Theorem 2 : Let E be a separable linear subspace of a Hilbert space

L2(03BC) where 03BC is e, probability measure on a si g me field of subsets of

a set S. Then E admits an orthonormal basis consisting of uniformly

bounded functions if and only if

Moreover if E n is a separable subspace of then the

orthonormal basis can be constructed so that it spans a linear sub-

space which is dense in the norm 11 - 11 
.0 

in E n L-(I,) .
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As a corollary we obtain that every subspace oi L ~ (0~1) of finite

codimension admits an orthonormal basis consisting of uniformly bounded

infinitely many times differentiable functions. This answers a question
of H. Shapiro [14J~

In the third section we consider the class of such Banach spaces X

which admit an isometric embedding, say j, into a space C(S) of all

scalar-valued continuous functions on a compact Hausdorff space S such

that there exists a Borel probability measure V on S such that the unit

ball of j(X) is not a totally bounded subset of L2(~), i.e. j(X) regar-

ded as a subspace of L2( ) satisfies the condition (ii) of Theorem 2.

Using a recent profound result of Rosenthal [13] we show that a Banach

space X has the above property if and only if it contains a closed linear

subspace isomorphic to the space 11 of all absolutely convergent series
of scalars.

1. Proof of Theorem 1 . We begin with a lemma which is a modifica-

tion of O1 evski i’ s Lemma 3 of [9]. If A is a non-empty subset of a

Banach space X, then [A] denotes the closed linear subspace of X gene-
rated by A and lin A - the linear subspace of X generated by A.

Lemma 1 : Let X be a Banach space and let n be a positive integer.
- -lk *

Let xo, x1,...,x 2n-1 
be elements 0 f X and let X" 0 I X*1 I ...7 x 2n_1 be.Let 2n-l be and let 0 x1, ..., x2n-1 

be-

and

then

ill,
elements of X such that

exists a unitary real
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Proof : The conditions (3) and (4) are satisfied for every unitary

2x2 - matrix. The specific unitary matrix for which (1) and (2)

hold is defined to be the matrix which transform the unit vector basis

of the 2 -dimensional Hilbert space 12 onto the Haar basis of this space.
-n

We put 

We have

Clearly (5) implies (1) and (2).

Proposition 1 : Let (x x 1* ) be a fundamental and total biorthogonal- .. ---- -- - --- -- -. -. 

Al na n 
I

sequence in a Banach space X such that there exists an increasing inf i-
- 1,

nite sequences (nk) such that I Then there exists
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a fundamental and total biorthogonal sequence (e ,e ) in X such that
n n

Proof : Without loss of generality one may assume that iix )) = 1
n

f or all n. Pick a permutation p(.) of the indices and an increasing

sequence (m ) of the indices so that if
r

Next we put

m

where akr. are defined as in Lemma 1 for n = m . Using Lemma 1 we easily
k, j * 

r

verify that such defined sequence (e ,e ) has the desired properties.
n n
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Proof of Theorem 1 : We shall assume that dim X = ~. Then the separability
of X implies that there exist sequences E1 c E2 C .., of subspaces of X

3~
and F1 C F2 C .M, of subspaces of X such that dim E~ _ dim F~ ; i for

*M* 
is dense in X and if f (x) = 0 for all

then x = 0. In view of Proposition 1 it is enough to construct a biortho-
11
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inductive hypothesis implies that C H and since dim ]

and we inf er that H ~ F .

Thus S 3. We define to be any norm prezerving extension of g
to a linear functional on x. 

n

Remark 1 : Using in the case 3° Day’s technique (cf. [3]) which bases on
the Borsuk antipodal mapping theorem one can choose (both in the case of

*
real and of complex scalars) x- and x3s so that

3s 

for s = 1,2,... Now the inspection of the proof of Theorem 1 yields that

in every separable Banach space for every e&#x3E; 0 there exists a fundamental

and bounded biorthogonal sequence (e en) such that lie nil lien  (1+V2)2 + c
n n 

. 

n n

for all n. We do not know whether for every c &#x3E; 0 this bound can be repla-

ced by 1+ c. However, as was observed by C. Bessaga we have

Corollary 1 : In every separable Banach space X there exists an equivalent
norm III ~ 111 such that there exists in X a fundamental and total biorthogonal

sequence (e ,e*) with = 1.
n n n n 

= 1.

is any fundamental and total biorthogonal sequence in X such thatile II = 1

for all n and sup lle*ll  co . . 

n

nn

Remark 2 : A similar argument to that which is used in the proof of

Theorem 1 allows to prove the following
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Theorem 11 : Let X and Y be Banach spaces and let T : X -- - Ybe one-to-

one bounded linear operator. If X is separable, T(X) is dense in Y and T

is not compact, then there exists fundamental and total biorthogonal se-

* *

quences (x ,x ) in X and (y y) in Y such that
n’ n ’ n n

and

for all n.

2. Constructions of uniformly bounded orthonormal sequences.

We employ the following notation. If ~ is a probability measure

( = a non negative normalized measure) on a sigma field of subsets of a
. _ ~ /~

for any p-absolutely square summable scalar valued functions x and y on S.

and L2(J1) denote as usually the Banach spaces of those x 

respectively.

The proof of Theorem 2 is similar to the proof of Theorem 1.

Instead of Proposition 1, we apply the following result due to Olevskil

([9J, Lemma 4).

Proposition 2 : Let p be aprobability measure on a sigma field of subsets

of a set S. Let (xn) be an infinite orthonormal (with respect to the inner
n

product  . , . &#x3E;) sequence of functions in Loo(03BC) such that 1 im inf oo.

Then there exists an orthonormal sequence (e ) such that 
n

n
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and

The proof of Proposition 2 can be obtained by a non essential modifi-

cation of the proofs of Lemma 1 and Proposition 1. Actually 01evskil sta-
ted Proposition 2 f or the Lebesgue measure on [0,I].

To prove Theorem 2 it is convenient to use the following simple fact.

Lemma 2 : Let (g ) be a normalized sequence in L 2(p) which weakly (in
gn n 

.. 

Y

L4(p)) converges to zero and let Then for every finite

dimensional subspace of say F, and for k&#x3E;0 there exist an index

no &#x3E; k and a function h in the orthogonal complement of F such that

and

Proof : Let p = dim F. Let any orthonormal basis for F.
20132013201320132013 l 2 p
Pick e&#x3E;0so that 

’

Since (g ) conver g es weakl y to 0 in L 2(g), there exists an index n &#x3E; kI I 
°

Clearly h belongs to the orthogonal complement of and
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We have

and

Proof of Theorem 2 : It follows from ( i ) that there exists in E an in-

creasing sequence of finite dimensional subspaces F1 C:F2 c ..,. such that
00 12

dim F = p and U F 
p 

is dense in E. Clearly if is a separable
~ 

00 

subset of Loo(p) one can choose the sequence (Fp) so that the union U F
p 

is dense in E n Loo(03BC) in the L’(p) norm. The condition (ii) yields that

there exists in E a sequence (gn) satisfying the assumption of Lemma 2.

In view of Proposition 2, it is enough to define inductively an orthonor-

mal sequence (h ) in L°(p) P E so that for s= 1,2, ..,

where I

We define h1 as any element of F1 with ~ Suppose that for

some the functions have been defined to satisfy
the conditions (7) and (8) and so that

I,et us consider separately two cases.
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This complete the induction and the proof of the sufficiency of the

conditions (i) and (ii). The necessity is trivial.

Remark 1 : A similar argument gives

Theorem 2’ : Let T : X -- -~H be a one to one bounded linear operator from

a Banach space X into a Hilbert space H. Let E = T(X). If E is separable

and T is not compact then there exists a sequence (x ) in X such that

sup jjx j)  oo and (T(x ) ) is an orthonormal basis f or E. Moreover if X is
n

* * #

separable and E X is defined by  T(x),x &#x3E; for x E X and for
n n n H

n=1,2..., where  . , . &#x3E;H denotes the inner product of H, then (xn) can

be chosen so that (x is a fundamental and total biortho g onal sequen-
., n n *

Remark 2 : There exists an orthonormal decomposition of L 2 0, 1] onto
subspaces E 1 and E such that neither E 1 nor E admit uniformly bounded
orthonormal bases. It is enough to define and

E2 = where (x ) is any orthonormal basis for 2 2m-1 m=2 n

such that the functions x. and x 2 are unbounded, x 2m-1 0 for 0 t 2
and x2m(t) = 0 (m= 19 2y However as was observed earlier

by F.G. Arutunian (unpublished) we have
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Corollary 2 : If E i s a linear subspace of a separable space L-(J.1)

where p is a non purely atomic probability measure and the orthogonal

complement of E is finite a uniformly bounded

orthonormal baxis. Moreover if E --, is in E then the basis

can be chosen from elements of E Q L~(~.) .

Proof : It is enough to show that rE] satisfies the conditions (i) and

(ii) of Theorem 2 r To check (i) first observe that the density of L Ð (~)
regarded as a subspace of L2(~) in L2( ) implies that for every positive

integer p and for every linearly independent f1,f9,...,f .1 
in " 

00 
1 2 p+1

there exist such that the matrix 

is invertible. Let be the inverse matrix and let
i,k 

for i = 1, 2, ... , p+1. The above observation applied to any basis of the or-

thogonal complement of E and any non zero element f of [E] yields the
existence of an y in L 00 (J.1) such that y~f&#x3E; ~ 1 and  ~r, g &#x3E; ~ 0 for all g

in the orthogonal complement of E. The last condition means that y E 

Hence there is no f/0 in [E] which is orthogonal to all y E Lco(g)
equivalently is dense in [EJ- Hence (E] satisfies (i).

The"moreover" part of the Corollary follows from the observation

that if [E] satisfies (ii) than E also satisfies (ii).

An immediate consequence of Corollary 2 is

Corollary 3 : Let f be an y unbounded function in Then the ortho-

gonal complement of f admits a uniformly bounded orthonormal basis consis-

ting of trigonometrical polynomials. This basis has no extension to any

uniformly bounded orthonormal basis for 

Corollary 3 answers a question of Shapiro [l4]
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3. Fat subspaces of C(S) spaces.

Definition : Let 03BC be a probability Borel measure on a compact Hausdorff

space S. A closed linear subspace Z of C(S) is said to be fat with respect

to if the unit ball of Z regarded as a subset of the Hilbert space L2( )
is not a totally bounded set.

Let I : Loop) - L2(~) denote the natural injection. A It is clear that

Z is fat with respect to p iff the rest.riction of I 
p 

to Z is not a compact

operator or equivalently if E T I (Z) satisfies the condition (ii) of Theo-

rem 2n

Our next result characterizes Banach spaces which admit fat isometric

embeddings into C(S) spaces. Some of the equivalent conditions are stated

in terms of 2-absolutely summing operators, i.e. such bounded linear ope-

rators which admit a factorization through a natural injection I 
p 

for some

measure (cf. C12’ and [8]). e

Proposition 3 : For every Banach space X the follwing conditions are

equivalent :

(a) there exists a uniformly bounded sequence (x ) of elements of X
n

such that no subsequence of (x ) is a weak Cauchy sequence,
n

(b) X contains a subspace isomorphic to 11, y

(c) there exists a 2-absolutely summing operator from X onto 1 ~ y

(d) there exists a 2-absolutely summing non compact operator from X

into 12, y

(e) for every for some isometric embedding j of X into a C(S) space

there exists a probability Borel measure 03BC on S such that j(X)
is fat with respect to p.

Proof : (a) ~ (b). This is a profound recent result of Rosenthal [13].
(b) ~ (c). Let T ba a bounded linear operator from 11 onto 12
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(cf. ~2~ for the existence of such an operator). Then by a result of

Grothendieck ~7] (cf. also F8]) T is 2-absolutely summing. Hence, by

T admits an extension to a 2-absolutely summing operator from X

onto 12. I)

(c) = (d). Obvious.

(d) ~ (e). Let T : X -- ~12 be a non compact 2-absolutely summing
operator and let S be a compact Housdorff space. By a result of Persson

and Pietsch [11], for every isometric embedding j : X -- -~ C( S) there

exists a Borel probability measure p on S such that T= A l 03BC j for some
2 2

bounded linear operator A : L 2(p) __ .12. Since T is not compact, the

image of the unit ball of j(X) under Ip is not a totally bounded subset

of Thus j(X) is a fat subspace of C(S) with respect to .

(e) =~ (a). It follows from (e) that there exists a uniformly bounded

sequence (x ) in X such that 1 for n/m (n,m=1, 2,...)
n n m 2

Thus the sequence (x ) does not contain weak Cauchy sequences because
n

I f.1 takes weak Cauchy sequences into strong Cauchy sequences.

A similar result to our Proposition 3 was recently independently

discovered by Weis [16J.

Our last result is related to Gaposhkin’s [6] generalization of a
result of Sidon [15].

Corollary 4 : I,et p be a probability measure on a sigme field of subsets

of S. Let ( gn) be a uniformly bounded sequence in Loo(J.1) such that (gn)
tends -vjea.’,,-.1y to zero in L2(p) and lim sup 0. Then there exists

n

an infinite subsequence and c &#x3E; 0 such that
nk

for every finite sequence of scalars c ,c ,...,c (p~l,2,...).
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Proof : Without loss of generality we may assume that

Then (g) does not have Cauchy (in L 2(p)) subsequences because (g )
weakly conver g es in L2(p) to zero but no subse q uence of (g ) strongly
converges to zero. Thus g~ ~ regarded as a sequence of elements of L’(p)
does not contain weak Lm(p)) sequences because the natural

inj ect ion L ( ~) ---L 2(p) takes weak Cauchy sequences in 

into stron g Cauchy sequences in L 2(p). Since su p complete
n

the 1 -,,,roof it is enough to apply Rosenthal’s criterion (cf. Rosenthal [13]
for the real case and Dor [5] for the complex case).

***
*
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