SÉMINAIRE D'ANALYSE FONCTIONNELLE École Polytechnique

R.I. OvSEPIAN
\section*{A. PeŁcZYŃSKi}
The existence in every separable Banach space of a fundamental total and bounded biorthogonal sequence and related constructions of uniformly bounded orthonormal systems in L^{2}

Séminaire d'analyse fonctionnelle (Polytechnique) (1973-1974), exp. no 20, p. 1-15
<http://www.numdam.org/item?id=SAF_1973-1974 \qquad A22_0>

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

and
A. PEKCZYŃSKI (Warszawa)*

```
    * Institute of Mathematics of the Armenian Academy of Sciences.
    * Instrtute of Mathematıce, Polish Academy of Sciences.
```


Abstract.

1) In every separable Banach space X a biorthogonal sequence $\left(x_{n}, x_{n}^{*}\right)$ is constructed such that linear combinations of the $x_{n}^{\prime} s$ are dense in X, for every x in X if $x_{n}^{*}(x): 0$ for all n then $x=0$ and $\sup _{n}\left\|x_{n}\right\|\left\|x_{n}^{*}\right\|<c$.
2) Linear subspaces of $L^{2}[0,1]$ whtch admit an orthonormal basis consisting of uniformly bounded functions are characterized.

The present paper consists of three sections.
In the first one using a trick invented by olevskií ([9] Lemmas 3 and 4) we prove

Theorem 1 : In every separable Banach space X there exists a fundamental and total biorthogonal sequence $\left(x_{n}, x_{n}^{*}\right)$ such that

$$
\sup _{\mathrm{n}}\left\|x_{\mathrm{n}}\right\|\left\|x_{n}^{*}\right\|<\infty
$$

Recall that a sequence $\left(x_{n}, x_{n}^{*}\right)$ of pairs consisting of elements of a Banach space X and bounded linear functionals on X, i.e.elements of X^{*} - the dual of X is said to be biorthogonal if $x_{n}^{*}\left(x_{m}\right)=\delta_{n}^{m}$ for $n, m=1,2, \ldots A$ biorthogonal sequence $\left(x_{n}, x_{n}^{*}\right)$ is fundamental if linear combinations of the $\because \underset{\sim}{\prime} s$ are dense in X, and is total if the condition $x_{n}^{*}(x)=0$ for $n=1,2, \ldots$ implies that $x=0$.

Theorem 1 answers a question of Banach ([1], p.238). A slightly weaker result has been previously obtained by Davis and Johnson [4].

The main result of the second section is

Theorem 2_: Let E be a separable linear subspace of a Hilbert space $\overline{L^{2}(\mu)}$ where μ is a probability measure on a sigme field of subsets of a set S. Then E admits an orthonormal basis consisting of uniformly bounded functions if and only if
(i) $E \cap L^{\infty}(\mu)$ is dense in E in the $L^{2}(\mu)$ norm,
(ii) $E \cap\left\{f \in L^{\infty}(\mu):\|f\|_{\infty} \leq 1\right\}$ is not a totally bounded subset of $L^{2}(\mu)$.

Moreover if $E \cap L^{\infty}(\mu)$ is a separable subspace of $L^{\infty}(\mu)$ then the orthonormal basis can be constructed so that it spans a linear subspace which is dense in the norm $\|.\|_{\infty}$ in $E \cap L^{\infty}(\mu)$.

As a corollary we obtain that every subspace of $L^{2}(0,1)$ of finite codimension admits an orthonormal basis consisting of uniformly bounded infinitely many times differentiable functions. This answers a question of H. Shapiro [14].

In the third section we consider the class of such Banach spaces X which admit an isometric embedding, say j, into a space $C(S)$ of all scalar-valued continuous functions on a compact Hausdorff space S such that there exists a Borel probability measure μ on S such that the unit ball of $j(X)$ is not a totally bounded subset of $L^{2}(\mu)$, i.e. $j(X)$ regarded as a subspace of $L^{2}(\mu)$ satisfies the condition (ii) of Theorem 2. Using a recent profound result of Rosenthal [13] we show that a Banach space X has the above property if and only if it contains a closed linear subspace isomorphic to the space 1^{1} of all absolutely convergent series of scalars.

1. Proof of Theorem 1 We begin with a lemma which is a modification of Olevskil's Lemma 3 of [9]. If A is a non-empty subset of a Banach space X, then [A] denotes the closed linear subspace of X generated by A and lin A - the linear subspace of X generated by A.

Lemma 1 : Let X be a Banach space and let n be a positive integer. Let $x_{0}, x_{1}, \ldots, 2_{2}^{n}-1$ be elements of x and let $x_{0}^{*}, x_{1}^{*}, \ldots, x_{2}^{*} n_{-1}^{*}$ be elements of X^{*} such that $x_{p}^{*}\left(x_{q}\right)=\delta_{p}^{q}$ for $p=0,1, \ldots, 2^{n}-1$. Then there exists anitary real matrix $\left(a_{k, j}^{n}\right)_{0 \leq k, j<2^{n}}$ such that if
and

$$
\begin{aligned}
& \mathbf{e}_{k}=\sum_{j=0}^{2^{n}-1} a_{k, j}^{n} x_{j} \\
& \mathbf{e}_{k}=\sum_{j=0}^{2^{n}-1} a_{k, j}^{n} x_{j}^{*}
\end{aligned}
$$

then

$$
\text { (1) } \quad \max _{0 \leq p<2^{n}}\left\|e_{p}\right\|<\left(1+\sqrt{2)} \max _{1 \leq j<2^{n}}\left\|x_{j}\right\|+2^{-\frac{n}{2}}\left\|x_{o}\right\|\right.
$$

(2)

$$
\max _{0 \leq p<2^{n}}\left\|e_{p}^{*}\right\|<(1+\sqrt{1-}) \max _{1 \leq j<2^{n}}\left\|x_{j}^{*}\right\|+2^{-\frac{n}{2}}\left\|x_{0}^{*}\right\|
$$

(3)

$$
e_{p}^{*}\left(e_{q}\right)=\delta_{p}^{q} \quad \text { for } p, q=0,1, \ldots, \varepsilon^{i}-1
$$

(4)

$$
\left[\left\{e_{p}\right\}_{0 \leq p \leq 2^{n}}\right]=\left[\left\{x_{p}\right\}_{0 \leq p<2^{n}} ; \quad\left[\left\{e_{p}^{*}\right\}_{0 \leq p<2^{n^{\prime}}}=r_{-}\left\{x_{p}^{*}\right\}_{0 \leq p<2^{n^{]}}}\right.\right.
$$

Proof : The conditions (3) and (4) are satissied for every unitary $2^{n} \times 2^{n}$ - matrix. The specific unitary matrix for which (1) and (2) hold is defined to be the matrix which transform the unit vector basis of the $2^{\text {n }}$-dimensional Hilbert space $1_{2^{2}}^{2}$ onto the Haar basis of this space. We put

$$
\begin{aligned}
& a_{k, 0}^{n}=2^{-\frac{n}{2}} \text { ior } 0 \leq k<2^{n}, \\
& a_{k, 2 s+r}^{n}= \begin{cases}2^{\frac{s^{-n}}{2}} & \text { for } 2^{n-s-1} 2 r \leq k<2^{n-s-1}(2 r+1) \\
-2^{\frac{s-n}{2}} & \text { for } 2^{n-s-1}(2 r+1) \leq k<2^{n-s-1}(2 r+2) \\
0 & \text { for } k<2^{n-s-1} 2 r \text { and for } k \geq 2^{n-s-1}(2 r+2)\end{cases} \\
&\left(s=0,1, \ldots, n-1 ; r=0,1, \ldots, 2^{s}-1\right)
\end{aligned}
$$

We have

$$
\begin{equation*}
\sum_{j=1}^{2^{n}-1}\left|a_{k, j}^{n}\right|=\sum_{s=0}^{n-1} 2^{-\frac{n-s}{2}}<1+\sqrt{2} \text { ior } 0 \leq k<2^{n} \tag{5}
\end{equation*}
$$

Chearly (5) inplies (1) and (2).

Proposition 1 : Let $\left(x_{n}, x_{n}^{*}\right)$ be a fundamental ard total biorthogonal sequence in a Banach space X such that there exists an invereasing infinite sequences $\left(n_{k}\right)$ such that $\sup _{n_{1}}\left\|x_{n_{k}}\right\|\left\|x_{n_{k}}^{*}\right\|=1$ < $\|_{\text {. Then there exisis }}$
a fundamental and total biorthogonal sequence $\left(e_{n}, e_{n}^{*}\right)$ in X such that

$$
\sup _{\mathrm{n}}\left\|e_{\mathrm{n}}\right\|\left\|e_{\mathrm{n}}^{*}\right\| \leq m(1+\sqrt{2})^{2}+1
$$

and

$$
\operatorname{lin}\left\{e_{n}\right\}_{n=1}^{\infty}=\operatorname{lin}\left\{x_{n}\right\}_{n=1}^{\infty}
$$

and

$$
\operatorname{lin}\left\{e_{n}^{*}\right\}_{n=1}^{\infty}=\operatorname{lin}\left\{x_{n}^{*}\right\}_{n=1}^{\infty}
$$

Proof : Without loss of generality one may assume that $\left\|x_{n}\right\|=1$ for all n. Pick a permutation $p($.$) of the indices and an increasing$ sequence (m_{r}) of the indices so that if $\tilde{x}_{n}=x_{p(n)}$ and $\tilde{x}_{n}^{*}=x_{p(n)}^{*}$ for all n and $q_{r}=\sum_{p=0}^{r} 2^{m} p$ for all r then

$$
\begin{aligned}
& \text { if } n \neq q_{r} \text { for all } r \text {, then }\left\|\tilde{x}_{n}\right\|\left\|\widetilde{x}_{n}^{*}\right\| \leq M, \\
& \text { if } n=q_{r} \text { for some } r=0,1 \ldots \text {, then }
\end{aligned}
$$

$$
\left(1+\sqrt{2}^{2}{ }^{2} M+1>\left[(1+\sqrt{2}) M+\left\|\tilde{x}_{n}^{*}\right\| 2^{-\frac{m_{r}}{2}}\right]\left[(1+\sqrt{2})+\left\|\tilde{x}_{n}\right\| 2^{-\frac{m_{r}}{2}}\right]\right.
$$

Next we put
where $a_{k, j}^{m}$ are defined as in Lemma 1 for $n=m_{r}$. Using Lemma 1 we easily verify that such defined sequence (e_{n}, e_{n}^{*}) has the desired properties.

$$
\begin{aligned}
& e_{n}=\widetilde{x}_{n} \text { and } e_{n}^{*}=\widetilde{x}_{n}^{*} \text { for } n<2^{m_{o}} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } 0 \leq k<2^{m} r ; r=1,2, \ldots
\end{aligned}
$$

Proof of Theorem 1 : We shall assume that $\operatorname{dim} X=\infty$. Then the separability of X implies that there exist sequences $E_{1} \subset E_{2} \subset \ldots$ of subspaces of X and $\mathrm{F}_{1} \subset \mathrm{~F}_{2} \subset \ldots{ }_{\infty}$ of subspaces of X^{*} such that $\operatorname{dim} E_{i}=\operatorname{dim} F_{i}=i$ for $i=1,2, \ldots, \quad \bigcup_{i=1}^{\infty} E_{i}$ is dense in X and if $f^{*}(x)=0$ for all $f^{\frac{i}{*}} \in \bigcup_{i=1}^{\infty} F_{i}$
then $x=0$. In view of Proposition 1 it is enough to construct a biorthogonal sequence $\left(x_{n}, x_{n}^{*}\right)$ in X such that if $G=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $H_{n}=\left[x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right]$ then for all s

$$
\begin{equation*}
\mathrm{G}_{3 \mathrm{~s}-1} \supset \mathrm{E}_{\mathrm{s}} ; \quad \mathrm{H}_{3 \mathrm{~s}-1} \supset \mathrm{~F}_{\mathrm{s}} ; \quad\left\|\mathbf{x}_{3 \mathrm{~s}}\right\|\left\|\mathbf{x}_{3 \mathrm{~s}}^{*}\right\| \leq 3 \tag{6}
\end{equation*}
$$

Pick $x_{1} \in X$ and $x_{1}^{*} \in X^{*}$ so that $0 \neq x_{1} \in E_{1}$ and $x_{1}^{*}\left(x_{1}\right)=1$. Assume that for some $n-1 \geq 1$ the elements $x_{1}, x_{2}, \ldots, x_{n-1}$ in X and the functionals $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n-1}^{*}$ in X^{*} have been defined to satisfy (6) and so that $x_{p}^{*}\left(x_{q}\right)=\delta_{p}^{q}$ for $p, q=1,2, \ldots, n-1$. We consider separately three cases.
1°) $n_{n}=3 s-2$. If $G_{n-1} \supset E_{s}$ we define $x_{n} \in X$ and $x_{n}^{*} \in X^{*}$ arbitrarily so that $x_{n}^{*}\left(x^{q}\right)=\delta_{n}^{q}$ and $x_{p}^{*}\left(x_{n}\right)=\delta_{p}^{n}$ for $p, q=1,2, \ldots, n$. If $E_{s} \backslash G_{n-1}$ is non empty, say $e \in E_{s} \backslash G_{n-1}$, then we put $x_{n}=e-\sum_{p=1}^{n-1} x_{p}^{*}(e) x_{p}$ and $G_{n}=\left[G_{n-1} \cup\left\{x_{n}\right\}\right]$. Clearly $x_{n} \neq 0$. Since $\operatorname{dim} E_{s}=\operatorname{dim} E_{s-1}+1$ and $e \in G_{n} \backslash E_{s-1}$ and since the inductive hypothesis implies that $E_{s-1} \subset G_{n-1}$, we infer that $G_{n} \supset E_{s}$. Since $x_{n} \in G_{n} \backslash G_{n-1}$, there exists a bounded linear functional on G_{n}, say g^{*}, such that $g^{*}\left(x_{n}\right)=1$ and $g^{*}(g)=0$ for $g \in G_{n-1}$. We define x_{n}^{*} to be any extension of g^{*} to a bounded linear functional on X.
2^{0}) $n^{\prime}=3 \mathrm{~s}-1$. If $H_{n-1} \supset F_{s}$ we define $x_{n} \in X$ and $x_{n}^{*} \in X^{*}$ arbitrarily so that $x_{n}^{*}\left(x_{q}\right)=\delta_{n}^{q}$ and $x_{p}^{*}\left(x_{n}\right)=\delta_{p}^{n}$ for $p, q=1,2, \ldots, n$. If $F_{s} \backslash H_{n-1}$ is non empty, say $\left.f^{*} \in F_{S}\right\rangle_{n-1}$ then we put $x_{n}^{*}=f^{*}-\sum_{q=1}^{n-1} f_{n-1}^{*}\left(x_{q}\right) x_{q}^{*}$. Since $f^{*} \notin H_{n-1}$, there exists an $x \in X$ such that $1=f^{*}-\sum_{q=1}^{n-1} f^{*}\left(x_{q}\right) x_{q}^{*}(x)$.

We put $x_{n}=x-\sum_{p=1}^{n-1} x_{p}^{*}(x) x_{p}$. It is easy to check $i, \ldots x_{n}^{*}\left(x_{q}\right)=\delta_{n}^{q}$ and $x_{p}^{*}\left(x_{n}\right)=\delta_{p}^{n}$ for $p, q=1,2, \ldots, n$. Let $H_{n}=\left[H_{n-1} \cup\left\{x_{n}\right\}\right]$. Since the inductive hypothesis implies that $F_{s-1} \subset H_{n-1}$ and since $\operatorname{dim} F_{s}=\operatorname{dim} F_{s-1}+1$ and $f^{*} \in F_{S} \backslash F_{S-1}$, we infer that $H_{n} \stackrel{S-1}{\supset} F_{S}$.
3°) $n=3 s$. Using Mazur's technique (cf. [10] Lemma) we pick an $x_{n} \in X$ with $\left\|x_{n}\right\|=1$ so that $x^{*}\left(x_{n}\right)=0$ for every $x^{*} \in H_{n-1}$ and for all g in G_{n-1} and for all scalars $t, \quad\left\|g+t x_{n}\right\| \geq(1-1 / 3)\|g\|$. Define g on G_{n} by $g^{*}\left(g+t x_{n}\right)=t . \operatorname{Then}|t|=\left\|t x_{n}\right\| \leq\left\|g+t x_{n}\right\|+\|g\| \leq(1+3 / 2)\left\|g+t x_{n}\right\|$.

Thus $\left\|g^{*}\right\| \leq 3$. We define x_{n}^{*} to be any norm preserving extension of g^{*} to a linear functional on X.

Remark 1 : Using in the case 3^{0} Day's technique (cf. [3]) which bases on the Borsuk antipodal mapping theorem one can choose (both in the case of real and of complex scalars) $x_{3 s}$ and $x_{3 s}^{*}$ so that $\left\|x_{3 s}\right\|=\left\|x_{3 s}^{*}\right\|=x_{3 s}^{*}\left(x_{3 s}\right)=1$ for $s=1,2, \ldots$ Now the inspection of the proof of Theorem 1 yields that in every separable Banach space for every $\varepsilon>0$ there exists a fundamental and bounded biorthogonal sequence $\left(e_{n}, e_{n}^{*}\right)$ such that $\left\|e_{n}\right\|\left\|e_{n}^{*}\right\|<\left(1+\sqrt{2}^{2}+\varepsilon\right.$ for all n. We do not know whether for every $\varepsilon>0$ this bound can be replaced by $1+\varepsilon$. However, as was observed by C. Bessaga we have

Corollary 1 : In every separable Banach space X there exists an equivalent norm $||\mid$. || such that there exists in X a fundamental and total biorthogonal sequence $\left(e_{n}, e_{n}^{*}\right)$ with $\left\|e_{n}^{*}\right\|\left\|\left\|e_{n}^{*}\right\|\right\|=1$ 。
$\underline{\text { Proof }: ~ W e ~ a d m i t ~}\left\|\left\|_{x}\right\|=\max \left(\|x\|, \sup _{n}\left|e_{n}^{*}(x)\right|\right)\right.$ for $x \in X$ where $\left(e_{n}, e_{n}^{*}\right)$ is any fundamental and total biorthogonal sequence in X such that $\left\|e_{n}\right\|=1$ for all n and $\sup _{n}\left\|e_{n}^{*}\right\|<\infty$.

Remark 2 : A similar argument to that which is used in the proof of Theorem 1 allows to prove the following

Theorem 1' : Let X and Y be Banach spaces and le: $T: X \rightarrow-T$ be one-toone bounded linear operator. If X is separable, $T(X)$ is dense in Y and T is not compact, then there exists fundamental and total biorthogonal sequences $\left(x_{n}, x_{n}^{*}\right)$ in X and $\left(y_{n}, y_{n}^{*}\right)$ in Y such that

$$
\sup _{n} \max \left(\left\|x_{n}\right\|\left\|x_{n}^{*}\right\|,\left\|y_{n}\right\|\left\|y_{n}^{*}\right\|\right)<\infty
$$

and

$$
T\left(x_{n}\right)=\mathbf{y}_{n}
$$

for all n .
2. Constructions of uniformly bounded orthonormal sequences.

We employ the following notation. If μ is a probability measure (= a non negative normalized measure) on a sigma field of subsets of a set S then $\langle x, y\rangle=\int_{S} x(s) y(s) \mu(d s), \quad\|x\|_{2}=\langle x, y\rangle^{1 / 2}$ and

$$
\|x\|_{\infty}=\inf _{\mu(B)=1} \sup _{s \in B}|x(s)|
$$

for any μ-absolutely square summable scalar valued functions x and y on S. $L^{\infty}(\mu)$ and $L^{2}(\mu)$ denote as usually the Banach spaces of those x that $\|x\|_{\infty}<\infty$ and $\|x\|_{2}<\infty$ respectively.

The proof of Theorem 2 is similar to the proof of Theorem 1. Instead of Proposition 1, we apply the following result due to olevskiy ([9], Lemma 4).

Proposition 2 : Let μ be aprobability measure on a sigma field of subsets of a set S. Let (x_{n}) be an infinite orthonormal (with respect to the inner product $<., \gg$ sequence of functions in $L^{\infty}(\mu)$ such that \lim inf $\left\|x_{n}\right\|_{\infty}<\infty$. Then there exists an orthonormal sequence (e_{n}) such that n

$$
\operatorname{lin}\left\{x_{n}\right\}_{n=1}^{\infty}=\operatorname{lin}\left\{e_{n}\right\}_{n=1}^{\infty}
$$

and $\sup _{\mathrm{n}}\left\|\mathrm{e}_{\mathrm{n}}\right\|_{\infty}$.

The proof of Proposition 2 can be obtained by a non essential modification of the proofs of Lemma 1 and Proposition 1. Actually Olevskiy stated Proposition 2 for the Lebesgue measure on $[0,1]$.

To prove Theorem 2 it is convenient to use the following simple fact.

Lemma 2 : Let $\left(g_{n}\right)$ be a normalized sequence in $L^{2}(\mu)$ which weakly (in $\left.L^{2}(\mu)\right)$ converges to zero and let sup $\left\|g_{n}\right\|_{\infty}=M<\infty$. Then for every finite dimensional subspace of $L^{\infty}(\mu)$, say F, and for $k>0$ there exist an index $n_{0}>k$ and a function h in the orthogonal complement of F such that

$$
\left[F \cup\left\{g_{n}\right\}\right]=[F \cup\{h\}], \quad\|h\|_{2}=1
$$

and

$$
\|h\|_{\infty}<M+2^{-k} .
$$

Proof : Let $p=\operatorname{dim} F$. Let $e_{1}, e_{2}, \ldots, e_{p}$ be any orthonormal basis for F. Pick $\varepsilon>0$ so that

$$
\frac{M+\varepsilon \sum_{j=1}^{p}\left\|e_{j}\right\|_{\infty}}{1-\varepsilon p}<M+2^{-k}
$$

Since $\left(g_{n}\right)$ converges weakly to 0 in $L^{2}(\mu)$, there exists an index $n_{0}>k$ such that $\left|<g_{n_{0}}, e_{j}>\right|<\varepsilon$ for $1 \leq j \leq p$. Put

$$
h=\left(g_{n_{0}}-\sum_{j=1}^{p}<g_{n_{0}}, e_{j}>e_{j}\right) \quad\left\|g_{n_{0}}-\sum_{j=1}^{p}<g_{n_{0}}, e_{j}>e_{j}\right\|_{2}^{-1} .
$$

Clearly h belongs to the orthogonal complement of $F,\|h\|_{2}=1$ and

$$
\left[F \cup\left\{\boldsymbol{g}_{n_{0}}\right\}\right]=[F \cup\{h\}]
$$

We have

$$
\begin{aligned}
\left\|g_{n_{o}}-\sum_{j=1}^{p}<g_{n_{o}}, e_{j}>e_{j}\right\|_{\infty} & \geq\left\|g_{n_{0}}\right\|_{\infty}+\left\|\sum_{j=1}^{p}<g_{n_{o}}, e_{j}>e_{j}\right\|_{\infty} \\
& \leq M+\varepsilon \sum_{j=1}^{p}\left\|e_{j}\right\|_{\infty}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|g_{n_{o}}-\sum_{j=1}^{p}<g_{n_{o}}, e_{j}>e_{j}\right\|_{2} & \geq\left\|g_{n_{o}}\right\|_{2}-\left\|\sum_{j=1}^{p}<g_{n_{o}}, e_{j}>e_{j}\right\|_{2} \\
& \geq 1-\varepsilon p .
\end{aligned}
$$

Thus $\|h\|_{\infty} \leq\left(M+\varepsilon \sum_{j=1}^{p}\left\|e_{j}\right\|_{\infty}\right)(1-\varepsilon p)<M+2^{-k}$.

Proof of Theorem 2 : It follows from (i) that there exists in E an increasing sequence of finite dimensional subspaces $F_{1} \subset \mathcal{F}_{2} \subset \ldots$ such that $\operatorname{dim} F_{p}=p$ and $\bigcup_{p=1}^{\infty} F_{p}$ is dense in E. Clearly if $E \cap L^{\infty}(\mu)$ is a separable subset of $L^{\infty}(\mu)$ one can choose the sequence $\left(F_{p}\right)$ so that the union $\bigcup_{p=1}^{\infty} F_{p}$ is dense in $E \cap L^{\infty}(\mu)$ in the $L^{\infty}(\mu)$ norm. The condition (ii) yields that there exists in E a sequence (g_{n}) satisfying the assumption of Lemma 2. In view of Proposition 2, it is enough to define inductively an orthonormal sequence $\left(h_{n}\right)$ in $L^{\infty}(\mu) \cap E$ so that for $s=1,2, \ldots$

$$
\begin{gather*}
{\left[\left\{h_{1}, h_{2}, \ldots, h_{2 s-1}\right\}\right] \supset F_{s},} \tag{7}\\
\left\|h_{2 s}\right\|_{\infty}<M+2^{-s} \tag{8}
\end{gather*}
$$

where $M=\sup _{\mathrm{n}}\left\|\mathrm{g}_{\mathrm{n}}\right\|_{\infty}$.

We define h_{1} as any element of F_{1} with $\left\|h_{1}\right\|_{2}=1$. Suppose that for some $n-1 \geq 1$ the functions $h_{1}, h_{2}, \ldots, h_{n-1}$ have been defined to satisfy the conditions (7) and (8) and so that $\left\langle h_{p}, h_{q}\right\rangle=\delta_{p}^{q}$ for $p, q=1,2, \ldots, n-1$. Let us consider separately two cases.

1) n. 2 s for some $\mathrm{s}=1,2$, ... We put $h_{\mathrm{n}}=\mathrm{h}$ wher. h is that of Lemma 2 applied for $F=\left[\left\{h_{1}, h_{2}, \ldots, h_{n-1}\right\}\right]$ for $\left(g_{p}\right)$ and for $k=s$.
2) $n=2 s-1$ for some $s=2,3, \ldots$ If $F_{s} \subset\left[\left\{h_{1}, h_{2}, \ldots, h_{n-1}\right\}\right]$ we again define $h_{n}=h$ where h is that of Lemma 2 applied for $F=\left[\left\{h_{1}, h_{2}, \ldots, h_{n-1}\right\}\right]$ for $\left(g_{p}\right)$ and for $k=1$. If $F_{m} \not \subset\left[\left\{h_{1}, h_{2}, \ldots, h_{n-1}\right\}\right]$ then there exists an f which belongs to $F_{s} \backslash\left[\left\{h_{1}, h_{2}, \ldots, h_{n-1}\right\}\right]$. Let \widetilde{f} be the orthogonal projection of f onto $\left[\left\{h_{1}, h_{2}, \ldots, h_{n-1}\right\}\right]$. We put $h_{n}=(f-\widetilde{f})\|f-\mathscr{f}\|_{2}^{-1}$. Clearly $\left\|h_{n}\right\|_{2}=1$ and h_{n} belongs to the orthogonal complement of $\left[\left\{h_{1}, h_{2}, \ldots, h_{n-1}\right\}\right]$. Obviously we have $f \in\left[\left\{h_{1}, h_{2}, \ldots, h_{1}\right\}\right] \backslash\left[\left\{h_{1}, h_{2}, \ldots, h_{n-1}\right\}\right]$. By the inductive hypothesis $\left.F_{s-1} \subset\left\{h_{1}, h_{2}, \ldots, h_{n-1}\right\}\right]$. Thus $F_{S} \subset\left[\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}\right]$ because $\operatorname{dim} F_{S}=\operatorname{dim} F_{s-1}+1$.

This complete the induction and the proof of the sufficiency of the conditions (i) and (ii). The necessity is trivial.

Remark 1 : A similar argument gives

Theorem 2' $\mathbf{2}^{\prime}$ Let $T: X \rightarrow-H$ be a one to one bounded linear operator from a Banach space X into a Hilbert space H. Let $E=T(X)$. If E is separable and T is not compact then there exists a sequence (x_{n}) in X such that $\sup \left\|x_{n}\right\|<\infty$ and $\left(T\left(x_{n}\right)\right)$ is an orthonormal basis for E. Moreover if X is separable and $x_{n}^{*} \in X^{*}$ is defined by $x_{n}^{*}(x)=\left\langle T(x), x_{n}\right\rangle_{H}$ for $x \in X$ and for $n=1,2, \ldots$, where $<\ldots,\rangle_{*} H$ denotes the inner product of H, then $\left(x_{n}\right)$ can be chosen so that $\left(x_{n}, x_{n}^{*}\right)$ is a fundamental and total biorthogonal sequence in X and $\sup _{n}\left\|x_{n}\right\|^{n^{\prime}}\left\|x_{n}^{n^{*}}\right\|<\infty$.
Remark 2 : There exists an orthonormal decomposition of $L^{2}[0,1]$ onto subspaces E_{1} and E_{2} such that neither E_{1} nor E_{2} admit uniformly bounded orthonormal bases. It is enough to define $E_{1}=\left[\left\{x_{1}\right\} \cup\left\{x_{2 m}\right\}_{m=2}^{\infty}\right]$ and $E_{2}=\left[\left\{x_{2}\right\} \cup\left\{x_{2 m-1}\right\}\right]_{m=2}^{\infty}$ where $\left(x_{n}\right)$ is any orthonormal basis for $L^{2}[0,1]$ such that the functions x_{1} and x_{2} are unbounded, $x_{2 m-1}(t)=0$ for $0 \leq t<\frac{1}{2}$ and $x_{2 m}(t)=0$ for $\frac{1}{2}<t \leq 1 \quad(m=1,2, \ldots)$. However as was observed earlier by F.G. Arutunian (unpublished) we have

Corollary 2 : If E is a linear subspace of a separatle space $L^{2}(\mu)$ where μ is a non purely atomic probability measure and if the orthogonal complement of E is finite dimensional, then [E] bas a uniformly bourded orthonormal basis. Moreover if $E\left\{L^{\prime}(\mu)\right.$ is dense in E then the basis can be chosen from elements of $\mathrm{E}, \cap \mathrm{L}^{\mathrm{co}}(\mu)$.

Proof : It is enough to show that [E] satisfies the conditions (i) and (ii) of Theorem 2. To check (i) first observe that the density of $L^{\infty}(\mu)$ regarded as a subspace of $L^{2}(\mu)$ in $L^{2}(\mu)$ implies that for every positive integer p and for every linearly independent $f_{1}, f_{2}, \ldots, f_{p+1}$ in $L^{2}(\mu)$ there exist $y_{1}, y_{2}, \ldots, y_{p+1}$ in $L^{\infty}(\mu)$ such that the matrix $\left(y_{k}, f_{j}\right){ }_{1 \leq k, j \leq p-1}$ is invertible. Let $\left(a_{i, k}\right)_{1 \leq i, k \leq p+1}$ be the inverse matrix and let
$z_{i}=\sum_{k=1}^{p+1} a_{i, k} y_{k}$ for $i=1,2, \ldots, p+1$. Then $z_{i} \in L^{\infty}(\mu)$ and $<z_{i}, f_{j}>=\delta_{i}^{j}$ for $i=1,2, \ldots, p+1$. The above observation applied to any basis of the orthogonal complement of E and any non zero element f of [E] yields the existence of an y in $L^{\infty}(\mu)$ such that $\langle y, f\rangle=1$ and $\langle y, g\rangle=0$ for all g in the orthogonal complement of E. The last condition means that $y \in[E]$. Hence there is no $f \neq 0$ in [E] which is orthogonal to ally $y \in E] \cap L^{\infty}(\mu)$, equivalently [E] $\cap L^{\infty}(\mu)$ is dense in [E]. Hence [E] satisfies (i).

The"moreover" part of the Corollary follows from the observation that if [E] satisfies (ii) than E also satisfies (ii).

An immediate consequence of Corollary 2 is

Corollary 3 : Let f be any unbounded function in $L^{2}[0,1]$. Then the orthogonal complement of f admits a uniformly bounded orthonormal basis consisting of trigonometrical polynomials. This basis has no extension to any uniformly bounded orthonormal basis for $L^{2}[0,1]$.

Corollary 3 answers a question of Shapiro [14]

3. Fat subspaces of $C(S)$ spaces.

Definitio. $: ~ L e t ~ \mu$ be a probability Borel measure on a compact Hausdorff space S. A closed linear subspace Z of $C(S)$ is said to be fat with respect to μ if the unit ball of Z regarded as a subset of the Hilbert space $L^{2}(\mu)$ is not a totally bounded set.

Let $I_{\mu}: L^{\infty}(\mu) \rightarrow L^{2}(\mu)$ denote the natural injection, It is clear that Z is fat with respect to μ iff the restriction of I_{μ} to Z is not a compact operator or equivalently if $E=I_{\mu}(Z)$ satisfies the condition (ii) of Theorem 2.

Our next result characterizes Banach spaces which admit fat isometric embeddings into $C(S)$ spaces. Some of the equivalent conditions are stated in terms of 2 -absolutely summing operators, i.e. such bounded linear operators which admit a factorization through a natural injection I_{μ} for some measure μ (cf. [12] and [8]).

Proposition 3 : For every Banach space X the follwing conditions are equivalent :
(a) there exists a uniformly bounded sequence $\left(x_{n}\right)$ of elements of X such that no subsequence of $\left(x_{n}\right)$ is a weak Cauchy sequence,
(b) X contains a subspace isomorphic to 1^{1},
(c) there exists a $2=$ absolutely summing operator from X onto 1^{2},
(d) there exists a 2-absolutely summing non compact operator from X into 1^{2},
(e) for every for some isometric embedding j of X into a $C(S)$ space there exists a probability Borel measure μ on S such that $j(X)$ is fat with respect to μ.

Proof : (a) \Rightarrow (b). This is a profound recent result of Rosenthal [13]. (b) $\Rightarrow(c)$. Let T ba a bounded linear operator from 1^{1} onto 1^{2}
(cf. [2] for the existence of such an operator). Then by a result of Grothendieck [7] (cf. also [8]) T is 2-absolutely summing. Hence, by [12] T admits an extension to a 2-absolutely summing operator from X onto 1^{2}
(c) $\Rightarrow(d)$. Obvious.
(d) $\Rightarrow(e)$. Let $T: X \cdots 1^{2}$ be a non compact 2 -absolutely summing operator and let S be a compact Housdorff space. By a result of Persson and Pietsch [11], for every isometric embedding $j: X \rightarrow C(S)$ there exists a Borel probability measure μ on S such that $T=A I \mu j$ for some bounded linear operator $A: L^{2}(\mu)--1^{2}$. Since T is not compact, the image of the unit ball of $j(X)$ under $I \mu$ is not a totally bounded subset of $L^{2}(\mu)$. Thus $j(X)$ is a fat subspace of $C(S)$ with respect to μ.
(e) \Rightarrow (a). It follows from (e) that there exists a uniformly bounded sequence $\left(x_{n}\right)$ in X such that $\left\|I \mu j\left(x_{n}\right)-I \mu j\left(x_{m}\right)\right\|_{2} \geq 1$ for $n \neq m(n, m=1,2, \ldots)$. Thus the sequence $\left(x_{n}\right)$ does not contain weak Cauchy sequences because I μ takes weak Cauchy sequences into strong Cauchy sequences.

A similar result to our Proposition 3 was recently independently discovered by Weis [16].

Our last result is related to Gaposhkin's [6] generalization of a result of Sidon [15].

Corollary 4 : Let μ be a probability measure on a sigme field of subsets of S. Let $\left(g_{n}\right)$ be a uniformly bounded sequence in $L^{\infty}(\mu)$ such that ($\left.g_{n}\right)$ tends wea: $: 1 \mathrm{ly}$ to zero in $L^{2}(\mu)$ and $\lim \sup \left\|g_{n}\right\|_{2}>0$. Then there exists an infinite subsequence $\left(g_{n_{k}}\right)$ and $c>0$ such that

$$
\left\|\sum_{k=1}^{p} c_{k} g_{n_{k}}\right\|_{\infty}>c \sum_{k=1}^{p}\left|c_{k}\right|
$$

for every finite sequence of scalars $c_{1}, c_{2}, \ldots, c_{p}(p=1,2, \ldots)$.

Proof : Without loss of generality we may assume that inf $\left\|g_{n}\right\|_{2}>0$. Then (g_{n}) does not have Cauchy (in $L^{2}(\mu)$) subsequences because (g_{n}) weakly converges in $L^{2}(\mu)$ to zero but no subsequence of (g_{n}) strongly converges to zero. Thus $g_{r .}$) regarded as a sequence of elements of $L^{\infty}(\mu)$ does not contain weak (is $\left.\dot{L}^{\infty}(\mu)\right)$ Cachy sequences because the natural injection $I \mu: L^{\infty}(\mu) \longrightarrow \rightarrow L^{2}(\mu)$ takes weak Cauchy sequences in $L^{\infty}(\mu)$ into strong Cauchy sequences in $L^{2}(\mu)$. Since $\sup _{n}\left\|g_{n}\right\|_{\infty}<\infty$, to complete the proof it is enough to apply Rosenthal's criterion (cf. Rosenthal [13] for the real case and Dor [5] for the complex case).

REFERENCES

[1] S. BANACH : Théorie des opérations linéaires, Monografie Mat., Warszawa 1932.
[2] S. BANACH und S. MAZUR : Zur Theorie der linearen Dimension, Studia Math. 4 (1933), 100-112.
[3] M.M. DAY : On the basis problem in normed linear spaces, Proc. Amer. Math. Soc. 13 (1962), 655-658.
[4] W.J. DAVIS and W.B. JOHNSON : On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math. 45 (1973), 173-179.
[5] L. DOR : On sequences spanning a complex l_{1} space, to appear.
[6] V.F. GAPOSHKIN : Lacunar series and independent functions, Usp. Mat. Nauk, 21 (132) (1966), 3-82 (Russian).
[7] A. GROTHENDIECK : Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Matem. Sao Paulo 8 (1956), 1-79.
[8] J. LINDENSTRAUSS and A. PEZCZÝNSKI : Absolutely summing operators in \mathcal{L} spaces and their applicatiohs, Studia Math. 29 (1968), 275-326.
[9] A. M. OLEVSKII : Fourier series of continuous functions with respect to bounded orthonormal systems, Izv. Akad. Nauk SSSR, Ser. Mat. 30 (1966), 387-432 (Russian).
[10] A. PEZCZYNSKI : A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math. 21 (1962), 371-374.
[11] A. PERSSON und A. PIETSCH : p-nukleare und p-integrale Abbildungen in BanachrHumen, Studia Math. 33 (1969), 19-62.
[12] A. PIETSCH: Absolutely p-summierende Abbildungen in normirten Ryumen, Studia Math, 28 (1967), 333-353.
[13] H.P. ROSENTHAL : A characterization of Banach spaces containing 1^{1}, Proc. Nat. Acad. Sci. USA to appear.
[14] H.S. SHAPIRO : Incomplete orthogonal families and related question on orthogonal matrices, Michigan J. Math. 11 (1964), 15-18.
[15] S. SIDON : Über orthogonalen Entwicklungen, Acta Math. Szeged 10 (1943), 206-253.
[16] L. WEISS : On strictly singular and stricily cosingular operators in preparation.

