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A Banach space, X ~ is said to have the Radon-Nikodym property.(RNP)

if, for every measure E) ~ X having finite total variation on

the a - algebra, L, and being absolutely continuous with respect to

a scalar measure B ~ there is a Bochner integrable f:S + X such that

for every p(E) = ~ t 
E 

f d B * J. von Neumann [131 (see also [3])

showed that Hilbert spaces have (RNP) . Clarkson [5] showed that uniformly

convex spaces and t I have (RNP) . but that CO ana 11) fail the

property. Dunford and Morse [9] showed that spaces having boundedly

complete bases have the property (see §1, below). Following these lines,

and the work of Dunford, Pettis and Phillips, by the following result

was known: If X is reflexive, or a separable dual space,, then X

has the Radon-Nikodym property. Section 1 here is devoted to the current

status of these characterizations. I

In 1967o Rieffel [15] gave a geometric condition on a space X which

is sufficient for X to have the RNP. If A is a subset of a Banach

space X ~ then A is dentable if for every e &#x3E; 0 . there exists x E A .

such that x ~ co (A B S e (x)) [here co(B) is the convex hull of B,

?o(B) its closure and S e (x) is the ball of radius e about x]. The

space X is dentable if every bounded subset of X is dentable. Rieffel

showed that dentable spaces have the RNP. In fact, spaces with the RNP

are dentable, and even more, as we shall see in the second section of
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this exposition.

For the most part, I shall present only sketches of proofs. I

wish to thank all of my friends who are allowing me to mention their

results which have not yet been published, in particular., Professors

James., Stegall, Lindenstrauss, Phelps, Huff, Pelczynski, Figiel and

Johnson. I also owe special thanks to J. Diestel for his historical

exposition of the RNP [8].

§ 1. Spaces which embed into separable conjugates.

In this section we are interested in pursuing the extensions of

the theorems of von Neumann, Birkhoff and Dunford-Morse mentioned above,

with the hope of finding a characterization of spaces with the RNP in

terms of certain embeddings. Toward this end, we nention the following

result of Uhl’s [1’~] which says that the RNP is a separably determined

property. Theorem: A B - space X has the RNP if and only if each

separable subspace of X has the RNP.

A geometric proof of this result was recently given by Maynard [ 12],

and will be sketched in the next section. The main extension of the

results above is also due to Uhl [17]. Theorem: A space X has the

RNP if every separable subspace of X embeds in a separable dual space.

It is now possible to prove this result from the (easy) Dunford-Morse

argument. Recall that a biorthogonal system (y , is said to be a

boundedly complete basis for Y if it is a basis and if the boundedness
n

of a sequence ( s a Yi implies the convergence of the seriesi i n-1

S &#x26;1 xi . It is well known that a space with boundedly complete basis

is isomorphic to a dual space.
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Proof of theorem: First we differentiate suitable p: (S , E) - Y with

boundedly complete basis. This is the Dunford-Morse proof: Notice that

for n = 1 , 2 , ... , the scalar measures p n (E ) = g n (~(E)) are finite

and absolutely continuous with respect to ~ . Hence, for each n there

is a scalar function fn : S -+ R such that for
n

Now define a sequence of functions

Since (yn) is a basis, there is a constant K &#x3E; 1 such that, for E E E p
n -

. Using the fact that (y ) is

boundedly complete, and the dominated convergence theorem, one sees that

h(.) = lim h n (.) (x - a.e.) is the desired derivative of w .

To complete the proof, we need the following result [7): If W embeds

into a separable dual spaee, then W embeds into a space with boundedly

complete basis. This result if not difficult, but a proof would require

too much space for this exposition. This completes fhe proof.

There is some evidence that the above condition is both necessary

and sufficient. First we observe the following: If Z is a separable
*

subspace of X , then there is a separable subspace Y of X such that

*

Z is isometric to a subspace of Y . Simply choose a sequence (y ) in
n

the ball of X such tha,t for z E Z, llzl! = sup z (v ^ ) and let Y = ’  
- 

: . n

Recall that X is said to be weakly compactly generated (WCG) (1] if there ,

is a weakly compact set K c X such that X = span K .

Lemma: If is WCG , then every separable subspace of X embeds in

a separable dual.

Proof : We show that if Y c X is separab~ e, then Y is separable.
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First notice that Y is a otient of X’ and hence is WCG . Let

K- be weakly compact c: Y such that Y = K, . Since X, is

weakly compact, the topologies a(y*, Y) and (Y* Y ) agree on

K1 ~ and~ by separability of Y , both are separable. Hence span IL is

cr(y Y ) (therefore I * ))) separable.

This lemma shows that weakly compactly genera ted conjugate spaces

have the RNP . Using a similar argument with an appeal to the Bishop-Phelps

theorem [4]~ one can show that if X 
‘ 

Frechet differentiable nom.,

then every separable subspace of X embeds into a separable dual.

The complete answer to the question cf what dual spaces have the

RNP has been obtained recently by Ste g all [161- X has the RNP if and

only if each separable subspace of X embeds into a separable dual. The

device used to prove this is Stegall’s

If X is separable and X is non-separable, then for each

s &#x3E; 0 , there is a weak homeomorph, A, of the Cantor set in the sphere

of X and a sequence (x no j) c X with  1 + c such that if

T : X-oC(&#x26;) is the canonical evaluation operator, then

is the canonical generating system for the ~,orel sets 

It is relatively easy to see that such a A cannot exist in a space

with the RNP .

The major problem left open, then, is: If X has the RNP , does

each separable subspace of X embed in a separable dual? In view of

Stegall’s results, this can be restated as: If X is separable and has

the RNP does X embed into a dual space which has the RNP? 
~ 

~ ,
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~ 2. Geometric characterizations of spaces with the RNP.

In [15), Rieffel- showed that X has the RNP if X is a dentable

space. Maynard [12] showed that the result becomes necessary and

sufficient if "dentable" is replaced by "s-dentable." A set A is

said to be s-dentable if for each e &#x3E; 0 there is x E A such that
oa

so that in general, co(B) C C(B) c co (B). A space X is s-dentable

if each bounded subset of X is s-dentable.

Maynard observed that a set is s-dentable if and only if each Or

its countable subsets is s-dentable. Thus, since he also showed that

X has the RNP if and only if X is s-dentable, we see that Uhl’s theorem

in the previous section follows.

In [6] it is shown that a space is dentable if and only if it is

s-dentable. To prove this, we need the following lemma of Rieffel’s (15]

whose proof is straightforward.

Lemma: If co A is dentable, then A is dentable.

Using Maynard’s and Rieffel’s theorem, we can now prove

Theorem [6]: X has the RNP if and only if X is dentable. ,

proof: The implication "dentability implies RNP" is Rieffel t s theorem.

For the other direction, suppose that X is not a dentable space, and

that A is a bounded, non-dentable subset of X ~ Let x E X such that

x + A and -x -A are separated. Then, i~ C = ?5(x + A , -x -A~ ,

C is closed, convex, symmetric., and if C is dentable, the same must

be true of the set (x + Al U (-x-Al , by Rieffel’s lemma. It is easy

to see that this forces x + A or -x-A to be dentable, which is absurd.
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Hence, C is non-dentable. Now let B be the unit ball of X and

U = B + C . Let e &#x3E; 0 such that for x E C , x E co (CBS (x ) ) , and
c

let u = b + c E B + C . Then, c (c ) ) , so
e

((b + C) B Se(b + c)) C co ((B + C) Se(u)), so that B + C

is non-dentable. Again using Rieffel’s U is non-dentable.

U is a convex body in X , so its gauge p is a norm on X equivalent

to the original. Thus, we may assume that the unit ball B of X is

non-dentable. Let E &#x3E; 0 such that’ 1 implies that

Let llxll  1 - ~ . Then there is 7~ &#x3E; 0 such that

For small E , 0 is an interior point of so the entire

segment [0 , H) is in the interior of that set. In particular,
Tx7

x E co(BOBS, /4 (x)), where Bo denotes the interior of the unit ball.

Thus., the interior of the ball is non-s-dentable, so the space X is

non-s-dentable. The other direction is trivial, and we have shown that

X is dentable if and only if X is s-dentable. Using Maynard’s theoren,

the proof is complete. 
’

It must be noted that the previous theorem has recently been proved

by R. Huff [10] directly using an improvement of Maynard’s argument. I

shall not sketch that proof here in order to have space for the next 

remarkable result of R. R. Phelps.

A Banach space X is said to have the Krein-Milman property if every

non-em,pty, closed, bounded, convex subset A X is the closed convex
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hull of its extreme points. Lindenstrauss [11] showed that 1 1 has

the Krein-Milman property, and has recently noted that his argument

together with the embedability of separable duals into spaces with

boundedly complete basis (above) can be used to prove the beautiful

theorem of Bessaga and Pelczynski [2]: If X embeds in a separable

dual then X has the Krein-Milman property. Thii has led several

people to ask what the relation between the Krein-Milman and Radon-Nikodym

properties is (e.g. [8]~. One difficulty here is the fact that it is

apparently unknown whether or not the Krein-Milman property is separably

determined. Recently, Lindenstrauss has shown that the RNP implies the

Krein-Milman property. A proof of this will appear in [ 14 ] . Now we

shall outline the proof of this stronger result of Phelps [ 14 ] .

Theorem: A space X has the RNP if and only if every nonempty, closed,

bounded, convex subset of X is the closed convex hull of its strongly

exposed points.

Before we prove this, we need some definitions and a For

a convex set A , say that x is a denting point of A if for every

e &#x3E; 0 , x 4 To-(ABSc(x)) . The point is strongl e osed if there is a
e 

,

functional f and a number a such that (u )f(u) = A - (x) and

if (yn) c A has f (yn) - a implies that 1jy - xI! -+ 0 . We shall
n n ! n I

call a set of the form {f(u)&#x3E;B}n A a slice of A if there is

z E A with f(z) &#x3E; B. The next lemma contains the characterizations

of denting points and strongly exposed points used in the proof of the

theorem. Part (d ) is due to E. Bishop who communicated the result

in a more general form to R. Phelps in 1967.
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Lemma: Let A be a closed, bounded, convex and nonempty in the Banach

space X . Then

a) A is dentable if and only if for every e &#x3E; 0 there is a

slice S of A having diameter less than e .

A point x E A is

b) a denting point of A if for all c &#x3E; 0 there is a slice S

of A , diam S  e , with x E S + = {u ~ f (u) &#x3E; a1 ,

c) a strongly exposed point if there is a functional g and a

sequence J3 of numbers such that diam(fg(u) &#x3E; t3 ) n A) -+ 0 and
n - n

such that x E (g(u) &#x3E; for each n .

d) The set A has a strongly exposed point if there is a sequence

of slices Sn of A with diam S n + 0 , Sn + Ie 5 n and such that the

determining functionals gn (for S) are a norm-Cauchy sequence.

Proof: We shall prove only (a). The proof’s of (b) and (c) are also

easy, but the proof of (d) is more delicate, and will appear in [14~] .

Suppose A is dentable. 0 and x E A such that x $ Z-o(AV-, e (x)) .
Then there is a functional f and a such that f(x) &#x3E; cx &#x3E; 

The slice (f(u) &#x3E; al n A is contained in S (x) , and
e 

- 

c

therefore has diameter less than 2 E . The other direction is also

immediate.

Proof of theorem: We shall prove f irst that each closed, bounded, convex,

nonempty set A in a dentable space has a denting point. The rest of

the proof follows by careful use of a lemma of Bishop and Phelps [

together with parts (c) and (d) Df the above lemma. We use parts (a)

and (b) of the lemma. According to (b), given a slice S1 of A and
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e&#x3E;0 we need to find a slice S2 of A , 

Suppose that S = ~ f (u ) &#x3E; A and let z E S with f(z) &#x3E; 0 .

Let D = (f(u) = 0) n A . If r = 0 , there is nothing to prove due

to part (a) of the so assume D / 0 - For each x E D , define

an involution of the space X through {f(1) = 01 by

Then., it is easy to see that if a norm bounded get (say by M) .
Consider the set K = U(TxS,lx E DJ}. It is bounded$ closedy convex

and nonempty, hence by (a) of the lemma, he 3 a slice E of diameter less

than 5 , where 8  min(e .t m- 9 Y St ~ose that = t33 n K .

If E then for some x 6 D , the setpent or

[x~ T x ZI is in !:, but both s gments hav3 length greater than 8 which

is impossible. Next, for E Si or w E for some xED,
we have sup g(u) &#x3E; g(w) &#x3E; P * In the firs:, case, let s 2 z n s, , and

UEk 
" 1

in the second, let S 2 = (TX(L) n is easy tc verify the desired
propertiesp completing the proof of the existence of denting POints.

In order to find strongly exposed poin ’Is. we show tiiat each slice,
~~s 

t .9

S = 0) n A a slice Sl = {g(x) &#x3E; Tl n A with diam and

);f - gjj  e . To see this, let K = co(S , X B n(f(x~ = 0)) . where B
is large and B denotes the bal- of the space. By the first part of -

the proof, there is a slice S2 of K of diameter  5 which misses

X B n (f(x) = O} - With S 2 = a) n K , let S1 = S 2 n S .

Normalizing g and f , the Bishop-Phelps lemma [4-] 3hows that for

suitable choices of 8 and X.,diamS 1  e and tjf - gt)  e  The

existence of strongly exposed points follows from (c) and (d) of the

lemma above.
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In examining the relationship, then, between the Krein-Milman and

Radon-Nikodym properties, the following problems remain open: 1. If X

has the KMP, does X have the RNP.? 2. If each separable subspace of

X has the :KMP, does X ? 3. ’:f X has the KMP, does every closed

bounded convex set have a strongly exposed (even denting) point?
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