SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

B. MAUREY

(Conférence n°1) Applications p-sommantes, pour p réel $\neq 0$, et démonstration d'une conjecture de Pietsch

Séminaire d'analyse fonctionnelle (Polytechnique) (1969-1970), exp. nº 28, p. 1-13 http://www.numdam.org/item?id=SAF_1969-1970_____A39_0

© Séminaire Laurent Schwartz (École Polytechnique), 1969-1970, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V Téléphone : MÉDicis 11-77 (633)

DEUX JOURNEES p-RADONIFIANTES

par B. MAUREY

§ 1. APPLICATIONS p-SOMMANTES, POUR p REEL \neq 0

Soient E et F deux espaces de Banach, et $u \in L(E,F)$. Nous dirons que u est p-sommante, $0 , s'il existe une constante p telle que pour tout système fini <math>(x_1,x_2,\ldots,x_n)$ de vecteurs de E, on ait :

$$(1) \qquad \left(\sum_{i=1}^{n} \|\mathbf{u}(\mathbf{x}_{i})\|^{p}\right)^{1/p} \leq \rho \sup_{\xi \in \mathbf{B}'} \left(\sum_{i=1}^{n} |\langle \mathbf{x}_{i}, \xi \rangle|^{p}\right)^{1/p}$$

(où B' désigne la boule unité de E'). On désigne par $\pi_p(u)$ la plus petite constante ρ telle que la propriété ci-dessus soit réalisée, et on pose $\pi_p(u) = +\infty$ s'il n'en existe pas. On désigne par $\pi_p(E,F)$ l'ensemble des applications $u \in L(E,F)$ telles que $\pi_p(u) < +\infty$.

En fait, il n'est pas nécessaire que F soit un Banach dans ce qui précède. Il suffit que F soit q-normé, avec $0 < q \le 1$, c'est-à-dire que la fonction $y \to \|y\|_F$ soit telle que :

$$y = 0 \Leftrightarrow ||y|| = 0$$

$$||\lambda y|| = |\lambda| ||y||$$

$$||y + z||^{q} \leq ||y||^{q} + ||z||^{q}$$

On dira que F est quasi-normé s'il est q-normé pour un certain q, 0 < q \leq 1.

D'autre part en posant $\frac{1}{0}=+^{\infty}$, $\frac{1}{\infty}=0$, a + $\infty=^{\infty}$, nous donnons un sens aux deux membres de (1) lorsque p est strictement négatif. Nous prendrons ce qui précède pour définition des p-sommantes pour p $\neq 0$.

Le but de ce qui suit est la démonstration de la conjecture suivante, énoncée dans [3]: toute application p-sommante pour un p < 1, est r-sommante pour tout r > -1.

Notons deux propriétés très faciles :

Proposition 1:
$$\forall p \neq 0$$
 $\pi_{p}(w \circ v \circ u) \leq ||w|| ||u|| \pi_{p}(v)$

<u>Proposition 2</u>: Si F est p-normé, $0 , <math>u \to \pi_p(u)$ est une p-norme sur $\pi_p(E,F)$.

Théorème 1 : Soient $u \in L(E,F)$, et $p \neq 0$. Si u est p-sommante, il existe une probabilité de Radon μ sur la boule unité B' de E', munie de la topologie $\sigma(E',E)$, telle que :

$$\forall \mathbf{x} \in \mathbf{E} \quad \|\mathbf{u}(\mathbf{x})\| \leq \pi_{\mathbf{p}}(\mathbf{u}). \quad (\int |\langle \mathbf{x}, \boldsymbol{\xi} \rangle|^{\mathbf{p}} d\mu(\boldsymbol{\xi}))^{1/p}$$

<u>Démonstration</u>: Ce théorème est connu pour p > 0, (voir [2]). Nous allons en esquisser la démonstration pour p < 0.

Soit Ω le cône convexe ouvert dans C(B') formé des fonctions strictement négatives. D'autre part l'ensemble des fonctions sur B' de la forme :

$$\varphi_{(\mathbf{x})}(\xi) = -(\pi_p(\mathbf{u}))^p \Sigma | < \mathbf{x}_i, \xi > |^p + \Sigma | \mathbf{u}(\mathbf{x}_i) |^p$$

constitue quand $(x) = (x_1, \dots, x_n)$ varie un cône convexe C' de fonctions continues à valeurs dans \overline{R} ne prenant pas la valeur $+\infty$.

Posons:
$$C = \{f \in C(B') | \exists g \in C', g \leq f\}$$

 \mathcal{C} est un cône convexe dans C(B'), et $\mathcal{C} \cap \Omega = \emptyset$.

Il existe donc (Hahn-Banach) une probabilité de Radon μ sur B', telle que :

$$\forall \mathbf{f} \in \mathcal{C} \quad \mu(\mathbf{f}) \geq 0$$

Soit $g \in \mathcal{C}'$, $g = \lim_{n \to \infty} \{ \sup(g, -n) \}$, donc : $\mu(g) \ge 0$, d'où le résultat en prenant :

$$g(\xi) = \|u(x)\|^p - (\pi_p(u))^p | < x, \xi > |^p$$

On démontre assez facilement les corollaires suivantes :

<u>Corollaire 1</u>: $p \rightarrow \pi_p(u)$ est une fonction décroissante.

Corollaire 2 : Rang $u \ge 2 \Rightarrow \pi_{-1}(u) = +\infty$

Corollaire 3: Si F est un Banach, et si $u \in \pi_p(E,F)$, p < 0, u est approximativement 0-radonifiante de E dans $\sigma(F'',F')$.

Soit γ_p la probabilité sur ${\rm I\!R}$ telle que :

$$\mathcal{F}_{\gamma_{p}} = e^{-|\tau|^{p}}, \quad 0$$

Soit d'autre part (Z_n) une suite de variables aléatoires indépendantes sur un espace de probabilité (Ω,μ) suivant la loi γ_n .

Pour toute suite $(\alpha_n) \in 1^p$ la série $\Sigma \alpha_n \ Z_n(\omega)$ converge dans $L^0(\Omega \ \mu)$, et a pour loi l'image de γ_p par l'homothétie $t \to \|\alpha\|$ t 1^p

Soit alors $-1 \le q \le 0$. On a donc :

$$\left(\int \left| \Sigma \alpha_{n}^{} Z_{n}^{}\left(\omega\right) \right|^{q} \ d\mu\left(\omega\right)\right)^{1/q} \ = \ \left\|\alpha\right\|_{1^{p}} \ \left(\int_{-\infty}^{+\infty} \ \left|u\right|^{q} \ d\gamma_{p}^{}\left(u\right)\right)^{1/q}$$

Or γ_p admet pour densité $\overline{\mathcal{F}_e}{}^-|\tau|^p,$ qui est une fonction $C^\infty,$ donc bornée à l'origine. Par conséquent :

$$\int_{-\infty}^{+\infty} |u|^q d\gamma_p(u) < +\infty$$

Finalement:

$$\|\alpha\|_{\mathbf{q}} = \mathbf{c}_{\mathbf{q}} \cdot (\int |\Sigma \alpha_{\mathbf{n}} \mathbf{Z}_{\mathbf{n}}(\omega)|^{\mathbf{q}} d\mu(\omega))^{1/\mathbf{q}}$$

Le theorème suivant est une extension des résultats de L. Schwartz [6]. La méthode de démonstration est identique.

Théorème 2 : Soit $0 . Toute application diagonale <math>1 \xrightarrow{\alpha} 1^p$ est q-sommante pour tout q > -1.

$$(\alpha((\mathbf{x}_n)_{n\in\mathbb{N}}) = (\alpha_n \mathbf{x}_n)_{n\in\mathbb{N}}, \text{ avec } \Sigma|\alpha_n^p| < +\infty)$$

 $\frac{D\acute{e}monstration}{ci-dessus}$: Soit \mathbf{Z}_n la suite de variables aléatoires introduite ci-dessus. Montrons que :

$$\mu$$
 p.s, $\Sigma |\alpha_n Z_n(\omega)|$ est convergente.

D'après le théorème des 2 séries de Kolmogoroff, il suffit pour cela que :

$$\Sigma \text{ Pr } \left(\alpha_{n-n}^{Z} > 1\right) < +\infty$$

et : $\Sigma \operatorname{Esp}(\left|\alpha_{n}Z_{n}\right|') < +\infty$, où $\left|\alpha_{n}Z_{n}\right|' = \left|\alpha_{n}Z_{n}\right| \operatorname{si} \left|\alpha_{n}Z_{n}\right| \leq 1$, 0 sinon.

Désignons par $\theta_p(x)$ la densité de γ_p . On sait qu'à l'infini, $\theta_p(x) \sim x^{-p-1}$. La première série s'écrit :

$$2\Sigma \int_{1/|\alpha_n|}^{\infty} \theta_p(x) dx \sim 2\Sigma |\alpha_n|^p < +\infty.$$

La deuxième s'écrit :

$$2\Sigma \left| \alpha_{n} \right| \int_{0}^{1/\left| \alpha_{n} \right|} x \theta_{p}(x) dx \sim 2\Sigma \left| \alpha_{n} \right| \cdot \left| \frac{1}{\alpha_{n}} \right|^{1-p} = 2\Sigma \left| \alpha_{n} \right|^{p} < +\infty.$$

Par conséquent, $\omega \rightarrow (\alpha_n Z_n(\omega))_{n \in \mathbb{N}}$ est une application mesurable de Ω dans 1^1 . Soit ν l'image de μ sur 1^1 par cette application.

Si
$$x = (x_n) \in 1^{\infty}$$
, on a:

$$\left\|\alpha\left(\mathbf{x}\right)\right\|_{1^{p}} \leq C_{q}\left(\int\left|\Sigma\alpha_{n}^{\mathbf{x}}\mathbf{x}_{n}^{\mathbf{Z}}\mathbf{x}_{n}\left(\boldsymbol{\omega}\right)\right|^{q} d\mu\left(\boldsymbol{\omega}\right)\right)^{1/q} = C_{q}\left(\int\left|\langle\mathbf{x},\boldsymbol{\xi}\rangle\right|^{q} d\nu\left(\boldsymbol{\xi}\right)\right)^{q}$$

Soit (x_1, \dots, x_k) un système fini de vecteurs de 1^{∞} :

C'est-à-dire après élévation à la puissance 1/q :

$$\pi_{q}(\alpha) \leq C_{q} \cdot (\int ||\xi||^{q} d\nu (\xi))^{1/q} < +\infty$$

§ 2. APPLICATIONS p-NUCLEAIRES

Soient E un espace de Banach, F un espace p-normé $(0 et <math>u \in L(E,F)$. On dira que u est p-nucléaire si elle admet une représentation de la forme :

$$u(x) = \Sigma \langle x, \xi_n \rangle y_n$$
, avec $\xi_n \in E'$, $y_n \in F$ et:

$$\Sigma \|\boldsymbol{\xi}_n\|^p < \boldsymbol{+}^{\boldsymbol{\omega}}; \ \sup \ \|\boldsymbol{y}_n\| < \boldsymbol{+}^{\boldsymbol{\omega}}$$

On désignera par $\nu_p(u)$ la borne inférieure des $(\Sigma \|\xi_n\|^p)^{1/p} \cdot \sup \|y_n\|$ pour toutes les représentations de u de la forme précédente. On a immédiatement :

<u>Proposition 3</u>: Toute application p-nucléaire, 0 est q-sommante pour tout <math>q > -1.

En effet si $u \in L(E,F)$ est p-nucléaire, elle admet la factorisation suivante :

$$E \to 1 \xrightarrow{\infty} \alpha \downarrow 1^p \to F$$

Il suffit d'appliquer la proposition 1 et le théorème 2.

<u>Lemme 1</u>: Soit (u_n) une suite d'éléments de L(E,F), telle que Σu_n converge simplement vers u, et que $\Sigma (v_p(u_n))^p < +\infty$. L'application u est alors p-nucléaire.

<u>Démonstration</u>: Pour tout n on peut écrire:

$$\mathbf{u}_{n}(\mathbf{x}) = \sum_{m} \langle \mathbf{x}, \boldsymbol{\xi}_{n,m} \rangle \mathbf{y}_{n,m}$$

et:
$$\sum_{m} \|\xi_{n,m}\|^{p} < (1+\epsilon)(v_{p}(u_{n}))^{p}; \sup_{m} \|y_{n,m}\| \leq 1$$

Alors:

$$u(x) = \sum_{n,m} (x) = \sum_{n,m} \langle x, \xi_{n,m} \rangle y_{n,m}$$

et:
$$\sum_{n,m} \|\xi_{n,m}\|^p \le (1+\epsilon) \sum_{n} (v_p(u_n))^p < +\infty; \sup_{n,m} \|y_{n,m}\| \le 1.$$

<u>Lemme 2</u>: Soient (Ω,μ) un espace de probabilité, $\Psi:\Omega o E'$ une fonction étagée. On définit $v_{\Psi}\in L(E,L^p(\Omega,\mu))$ par :

$$v_{\Psi}(x)(\omega) = \langle x, \Psi(\omega) \rangle$$
, $0n \ a :$

$$(0$$

<u>Démonstration</u> : On peut écrire :

 $\Psi = \Sigma \xi_i \chi_{A_i}$, où les A_i sont deux à deux disjoints.

Alors:
$$v_{\psi}(x) = \Sigma \langle x, \xi_i \rangle \chi_{A_i} = \Sigma \langle x, \xi_i \| \chi_{A_i} \|_{L^p} > \frac{\chi_{A_i}}{\| \chi_{A_i} \|_{L^p}}$$

$$\text{Donc}: (v_{p}(v_{\psi}))^{p} \leq \Sigma \|\xi_{i}\|^{p} \|\chi_{A_{i}}\|_{L^{p}}^{p} = \Sigma \mu(A_{i})\|\xi_{i}\|^{p} = (\|\Psi\|_{L^{p}(\Omega, \mu, E')})^{p}.$$

Le théorème suivant qui a été établi également par Simone Chevet, est une généralisation d'un théorème de Perrson [5]. Notre méthode est identique à celle de Perrson. Théorème 3 : Soient E un espace de Banach réflexif, Ω un espace compac et $u: E \to C(\Omega) \to L^p(\Omega,\mu)$, 0 . L'application <math>u est p-nucléaire.

<u>Démonstration</u>: D'après le théorème de Dunford-Pettis-Phillips, il existe φ μ -mesurable bornée de Ω dans E' telle que :

$$\forall x \in E, \mu p.s : u(x)(\omega) = \langle x, \varphi(\omega) \rangle$$

On peut trouver une suite de fonctions étagées $\phi_{\textbf{n}}$ telle que :

$$\lim_{n} \|\varphi - \varphi_{n}\|_{L^{p}(\Omega, \mu, E')} = 0$$

$$\sum_{n} \| \varphi_{n+1} - \varphi_{n} \|^{p}_{L^{p}(\Omega, \mu, E^{*})} < \infty$$

Supposons que $\varphi_0 = 0$.

Définissons v_n par :

$$\mathbf{v}_{\mathbf{n}}(\mathbf{x})(\omega) = \langle \mathbf{x}, \phi_{\mathbf{n+1}}(\omega) - \phi_{\mathbf{n}}(\omega) \rangle$$

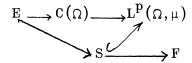
La série $\sum_{n\geq 0} v_n$ converge simplement vers u, et

$$\sum_{n} (v_{p}(v_{n}))^{p} \leq \sum_{n} \|\varphi_{n+1} - \varphi_{n}\|^{p} < +\infty,$$

donc u est p-nucléaire d'après le lemme 1.

Corollaire : Soient E un Banach réflexif, et $u \in \pi_p(E,F)$, 0 . L'application <math>u est alors q-sommante pour tout q > -1.

<u>Démonstration</u>: Cela résulte aussitôt de la factorisation des applications p-sommantes: (voir [2]),



§ 3. LA CONJECTURE DE PIETSCH ET QUELQUES EXTENSIONS

Théorème 4: Soient p et r tels que -1 < r \leq p < 1. Il existe une constante universelle C(p,r) telle que pour tout espace de Banach E, tout espace quasi-normé F et tout u $\in L(E,F)$, on ait:

$$\pi_{\mathbf{r}}(\mathbf{u}) \leq C(p, \mathbf{r}) \cdot \pi_{\mathbf{p}}(\mathbf{u})$$

<u>Démonstration</u>: Raisonnons par l'absurde. Il suffit de considérer le cas $0 . Si le théorème n'est pas vrai, il existe une suite d'espaces de Banach <math>E_n$, une suite d'espaces quasi-normés F_n et $u_n \in L(E_n, F_n)$ telles que :

$$\pi_{p}(u_{n}) \leq \frac{1}{2^{n}} \pi_{r}(u_{n}) > 2^{n}$$

On sait que un admet une factorisation :

$$\begin{array}{ccc}
E & \xrightarrow{C} & \xrightarrow{L^p} \\
\bar{u}_n & \xrightarrow{S} & \xrightarrow{V} & F_n
\end{array}$$

avec
$$\|\mathbf{v}\| \le 1$$
, $\pi_{\mathbf{p}}(\bar{\mathbf{u}}_{\mathbf{n}}) = \pi_{\mathbf{p}}(\mathbf{u}_{\mathbf{n}})$.

Donc: $\pi_{\mathbf{p}}(\bar{\mathbf{u}}_{\mathbf{n}}) \le \frac{1}{2^{\mathbf{n}}}$; $\pi_{\mathbf{r}}(\bar{\mathbf{u}}_{\mathbf{n}}) \ge \|\mathbf{v}\|^{-1} \pi_{\mathbf{r}}(\mathbf{u}_{\mathbf{n}}) > 2^{\mathbf{n}}$

On peut donc remplacer $\mathbf{F_n}$ par $\mathbf{S_n}$ qui est p-normé.

D'autre part, par définition des r-sommantes : $\pi_r(\bar{u}_n) > 2^n \Rightarrow \text{il existe } E_{n,o} \subset E_n \text{ de dimension finie, tel que en désignant par } \bar{u}_{n,o} \text{ la restriction de } \bar{u}_n \text{ à } E_{n,o}, \text{ on ait :}$

$$\pi_{p}(\bar{\mathbf{u}}_{n,o}) \leq \pi_{p}(\bar{\mathbf{u}}_{n}) \leq \frac{1}{2^{n}}$$

et

$$\pi_{\mathbf{r}}(\bar{\mathbf{u}}_{\mathbf{n}, \mathbf{o}}) > 2^{\mathbf{n}}$$

Finalement, on peut supposer E_n de dimension finie et F_n p-normé, $u_n \in L(E_n, F_n)$, $\pi_p(u_n) \leq \frac{1}{2}n$, $\pi_r(u_n) \geq 2^n$.

Désignons par $1^2(E_n)$ [resp. $1^2(F_n)$] l'espace des suites (x_n) telles que $x_n \in E_n$ (resp. $x_n \in F_n$), et $\Sigma \|x_n\|^2 < +\infty$. L'espace $1^2(E_n)$ est un Banach réflexif (car chaque E_n est de dimension finie) et $1^2(F_n)$ est p-normé.

On a pour chaque m une injection $i_{\mbox{\scriptsize m}}$ et une projection $\pi_{\mbox{\scriptsize m}}$ naturelles de norme 1 :

$$i_{m}^{E}: E_{m} \rightarrow 1^{2}(E_{n}) \quad i_{m}^{F}: F_{m} \rightarrow 1^{2}(F_{n})$$

$$\pi_{m}^{E}: 1^{2}(E_{n}) \rightarrow E_{m} \quad \pi_{m}^{F}: 1^{2}(F_{n}) \rightarrow F_{m}$$

Posons $v_m = i_m^F \circ u_m \circ \pi_m^E$

et:
$$\mathbf{v} = \Sigma \mathbf{v}_{\mathbf{m}}$$

D après la proposition 2:

$$(\pi_{p}(\mathbf{v}))^{p} \leq \sum_{m} (\pi_{p}(\mathbf{v}_{m}))^{p} \leq \sum_{m} (\pi_{p}(\mathbf{u}_{m}))^{p} < +\infty$$

Par conséquent, puisque $1^2(E_n)$ est réflexif : (Corollaire du th. 3) :

$$\pi_{r}(v) < +\infty$$

 $\begin{array}{lll} 0r: & u_m = \pi_m^F \text{ovoi}_m^E \text{ , donc par la proposition 2 : pour tout m,} \\ & \pi_r(u_m) \leq \pi_r(v), \text{ d'où une contradiction.} \end{array}$

Nous allons donner maintenant sans démonstration quelques extensions des résultats précédents.

Appelons jauge sur un espace de Banach E toute fonction ≥ 0 ϕ sur E telle que :

$$\forall \lambda > 0, \quad \varphi(\lambda x) = \lambda, \varphi(x)$$

On dit que ϕ est p-sommante (p \neq o) s'il existe $\phi>0$ tel que pour tout système (x_1,...x_n) de vecteurs de E, on ait :

$$(\Sigma(\varphi(x_i))^p)^{1/p} \le \rho \cdot \sup_{\xi \in B'} (\Sigma | \langle x_i, \xi \rangle |^p)^{1/p}$$

On note $\pi_p(\phi)$ la borne inférieure des constantes ρ telles que la propriété ci-dessus soit réalisée.

Théorème 5 : Pour tout espace de Banach E et toute jauge φ sur E : $-1 < r \le p \le 1 : \pi_r(\varphi) \le C(p, r). \pi_p(\varphi).$

Soient $0 et <math>u \in L(E,F)$. On dit que u est (p,q)-sommante s'il existe ρ telle que pour tout système fini de vecteurs de E

$$(\Sigma \| \mathbf{u}(\mathbf{x}_{i}) \|^{q})^{1/q} \le \rho. \quad \sup_{\xi \in B'} (\Sigma | \langle \mathbf{x}_{i}, \xi \rangle |^{p})^{1/p}$$

Théorème 6 : Soit $u \in L(E,F)$ une application (p,q)-sommante, avec $0 , <math>p \le q$. Pour tout s, 0 < s < p, u est (s,t)-sommante avec : $\frac{1}{s} - \frac{1}{t} = \frac{1}{p} - \frac{1}{q}$.

Soit maintenant Φ une fonction positive sur $[0, +\infty]$, telle que

a) $\Phi(0) = 0$, Φ est concave croissante, $\frac{\Phi(t)}{t^2}$ décroissante, et

 $\lim_{t\to\infty} \Phi(t) = +\infty$

b) $\exists p, 0$

Rappelons (voir [1]) qu'une application $u \in L(E,F)$ est dite $(\Phi,0)$ -sommante s'il existe deux nombres ρ et $\alpha>0$ et une probabilité de Radon μ sur B' munie de la topologie $\sigma(E',E)$ tels que :

$$\forall x \in E \qquad \int \Phi\left(\frac{\rho < x, \xi >}{\|u(x)\|}\right) d\mu(\xi) \geq \alpha.$$

Théorème 7: Pour que toute application $(\Phi-0)$ -sommante d'un espace de Banach E dans un espace quasi-normé F soit q-sommante pour tout q > -1, il faut et il suffit que :

$$\int_{1}^{\infty} \frac{\Phi(t)}{t^{2}} dt < +\infty.$$

Par exemple,
$$\Phi(t) = \frac{t + C}{(\log(t+C))^{\alpha}} - \frac{C}{(\log C)^{\alpha}}$$
,

avec α > 1 et C suffisamment grand vérifie toutes les conditions du théorème 7.

Bibliographie

- [1] P. Assouad : Séminaire L. Schwartz 69-70, Exposés 47 et 27 bis
- [2] D. Lépingle : Séminaire L. Schwartz 69-70; Exposé
- [3] B. Maurey : C. R. Acad. Sc. Paris t.272 p.376-378 (Février 71)
- [4] B. Maurey : C. R. Acad. Sc Paris t.274 p. 73-76 (Janvier 72)
- [5] A. Perrson : Stud. Math 33 (1969)
- [6] L. Schwartz : Séminaire L. Schwartz 69-70; Expcé 26