@article{SAD_1991__16_3_107_0, author = {Lyazrhi, Faouzi}, title = {D\'etection de ruptures dans un mod\`ele lin\'eaire gaussien : optimalit\'e de proc\'edures de d\'ecision multiple bas\'ees sur le rapport de vraisemblance}, journal = {Statistique et analyse des donn\'ees}, pages = {107--125}, publisher = {Association pour la statistique et ses illustrations}, volume = {16}, number = {3}, year = {1991}, mrnumber = {1209841}, language = {fr}, url = {http://www.numdam.org/item/SAD_1991__16_3_107_0/} }
TY - JOUR AU - Lyazrhi, Faouzi TI - Détection de ruptures dans un modèle linéaire gaussien : optimalité de procédures de décision multiple basées sur le rapport de vraisemblance JO - Statistique et analyse des données PY - 1991 SP - 107 EP - 125 VL - 16 IS - 3 PB - Association pour la statistique et ses illustrations UR - http://www.numdam.org/item/SAD_1991__16_3_107_0/ LA - fr ID - SAD_1991__16_3_107_0 ER -
%0 Journal Article %A Lyazrhi, Faouzi %T Détection de ruptures dans un modèle linéaire gaussien : optimalité de procédures de décision multiple basées sur le rapport de vraisemblance %J Statistique et analyse des données %D 1991 %P 107-125 %V 16 %N 3 %I Association pour la statistique et ses illustrations %U http://www.numdam.org/item/SAD_1991__16_3_107_0/ %G fr %F SAD_1991__16_3_107_0
Lyazrhi, Faouzi. Détection de ruptures dans un modèle linéaire gaussien : optimalité de procédures de décision multiple basées sur le rapport de vraisemblance. Statistique et analyse des données, Tome 16 (1991) no. 3, pp. 107-125. http://www.numdam.org/item/SAD_1991__16_3_107_0/
[1] A Bayesian Approach to Retrospective Identification of Change-point, Journal of Econometrics, 19, 7-22. | MR | Zbl
and (1982)[2] Detecting Structural Change in linear models, Commun. Statist Theor. Meth., A10 (2u), 2551-2561. | MR | Zbl
and (1981)[3] Techniques of Testing the Constancy of Regression Relachips over Time, J.R.S.S.B. 37, 149-92. | Zbl
and and (1975)[4] Optimal Properties of one-step Variable Selection in Regression, Ann. Statist., vol. 11, n° 1, 219-24. | MR | Zbl
(1983)[5] Some Geometric Tools for the Gaussian Linear Model, in Linear Statistical Inference, Lecture Notes in Statistics, n° 35, Springer-Verlag, 1-19. | MR | Zbl
and (1985)[6] On Partitioning Means into Groups, Scand. J. Statist., 9, 147-152. | MR | Zbl
and (1982),[7] Test of disorder of regression : Asymptotic Comparison, Thoery. Prob. Appli., 27, 100-115. | Zbl
and (1982)[8] A test for a Shifting Slope Coefficient in a Linear Model, J. Amer. Statist. Ass., 65, 1320-99. | Zbl
and (1970)[9] A Bayesian Analysis of switching Regression Model : Known Number of Regimes, J. Amer. Statist. Ass., 10, 370-75. | Zbl
(1975)[10] An Unknown Change-point and Goddness of fit, The statistician, 35, 335-344.
. (1986)[11] Testing a Sequence of Observation for a Shift in location, J. Amer. Statist. Ass., 72, 180-6. | MR | Zbl
(1977)[12] Change-point Problem with correlated Observations with an Application in Material Accountancy, Technometrics, vol. 28,381-89. | Zbl
(1986)[13] Inference about the Intersection in Two-phase Regression, Biometrika, 56, 495-504. | Zbl
(1969)[14] Inference in Two-phase Regression, J. Amer. Statist. Asso., 66, 736-45. | Zbl
(1982)[15] Bayesian inference related to shifting séquences and two-phase regression, Commun. Statist. Theor. Meth., A6(3), 265-75. | MR | Zbl
and (1977)[16] Test for a changepoint, Biometrika, 74, 1,71-83. | MR | Zbl
and and (1987)[17] The likelïhood ratio test for a change-point in simple linear regression, Biometrika, 76,3,409-23. | MR | Zbl
and (1989)[18] On Hotelling's Approach to Testing for a non linear Parameter in Regression, Intern. Statist., Rev., 57, n° 3, 205-22. | Zbl
and (1989)[19] Testing the constancy of regression relationships over time using least squares residuals, App. Statist., 29, 142-48. | Zbl
and (1980)[20] A Bivariate Test for the Detection of a Systematic Change in Means, J. Amer. Statist. Ass., 73, 640-5. | MR | Zbl
and (1978)[21] A New Approach to Estimating Switching Regressions, J. Amer. Statist. Ass., vol. 67, 306-10. | Zbl
(1972)[22] Bayesian Analysis of a Poisson Process with a Change-point, Biometrika, 73,1, 85-9. | MR
and (1986)[23] Change-point Problem and Two-phase Regression ; an annotated Bibliography, Intern. Statist. Rev., 48,83-93. | MR | Zbl
(1980)[24] Straight lines with a Change-point : a Bayesian Analysis ofsome Renal Transplant Data, Appl. Statist., 29, 180-9. | MR | Zbl
and (1980)[25] A Bayesian Analysis of some Time- Varying Models, in Recent Developments in Statistics, eds. Barra, J.R., Brodeau, F., Romier, G., and Van Cutsem, B., Amsterdam : North-Holland, 257-267. | MR | Zbl
and (1977)[26] Estimation of Break Point Parameters using GLIM, GLIM Nrwsletter, 17,292-300.
and (1989)[27] On the Likelihood Ratio test for Shift in Location of Normal Population, J. Amer. Statist. Ass., 74, 36-57. | MR | Zbl
(1979)[28] Confidence Regions and Tests for a Change-point in a Sequence of Exponential Family Variables, Biometrika, 73,91-104. | MR | Zbl
(1986)[29] Classical and Bayesian Approachs to the Change-point Problem : Fixed Samples and Sequential Procedures, Statistique et Analyse des Données, vol. 7, n° 1, pp. 48. | Numdam | MR | Zbl
(1982)