@article{RSMUP_2015__133__117_0, author = {Hafezieh, Roghayeh and Spiga, Pablo}, title = {Groups having complete bipartite divisor graphs for their conjugacy class sizes}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {117--124}, publisher = {Seminario Matematico of the University of Padua}, volume = {133}, year = {2015}, mrnumber = {3354947}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2015__133__117_0/} }
TY - JOUR AU - Hafezieh, Roghayeh AU - Spiga, Pablo TI - Groups having complete bipartite divisor graphs for their conjugacy class sizes JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2015 SP - 117 EP - 124 VL - 133 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2015__133__117_0/ LA - en ID - RSMUP_2015__133__117_0 ER -
%0 Journal Article %A Hafezieh, Roghayeh %A Spiga, Pablo %T Groups having complete bipartite divisor graphs for their conjugacy class sizes %J Rendiconti del Seminario Matematico della Università di Padova %D 2015 %P 117-124 %V 133 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2015__133__117_0/ %G en %F RSMUP_2015__133__117_0
Hafezieh, Roghayeh; Spiga, Pablo. Groups having complete bipartite divisor graphs for their conjugacy class sizes. Rendiconti del Seminario Matematico della Università di Padova, Tome 133 (2015), pp. 117-124. http://www.numdam.org/item/RSMUP_2015__133__117_0/
[1] On graphs related to conjugacy classes of groups, Israel J. Math. 86 (1994), 211–220. | MR | Zbl
,[2] Abelian coverings of finite general linear groups and an application to their non-commuting graphs, J. Algebraic Combin. 34 (2011), 683–711. | MR | Zbl
, , , ,[3] On a graph related to conjugacy classes of groups, Bull. London Math. Soc. 22 (1990), 569–575. | MR | Zbl
, , ,[4] On bipartite divisor graphs for group conjugacy class sizes, J. Pure Appl. Algebra 213 (2009), 1722–1734. | MR | Zbl
, , , ,[5] The influence of conjugacy class sizes on the structure of finite groups: a survey, Asian-European J. Math. 4 (2011), 559–588. | MR | Zbl
, ,[6] The diameter of a conjugacy class graph of finite groups, Bull. London Math. Soc. 28 (1996), 141–148. | MR | Zbl
, ,[7] C. Casolo, personal communication.
[8] The structure of finite groups of conjugate rank 2, Bull. London Math. Soc. 41 (2009), 916–926. | MR | Zbl
, ,[9] On the vanishing prime graph of groups, Journal Lond. Math. Soc. 82 (2010), 167–183. | MR | Zbl
, , , ,[10] Bipartite divisor graph for the product of subsets of integers, Bull. Aust. Math. Soc. 87 (2013), 288–297. | MR | Zbl
, ,[11] Groups having complete bipartite divisor graphs for their conjugacy class sizes, arXiv:1309.5629.
, ,[12] Bipartite divisor graphs for integer subsets, Graphs Combin. 26 (2010), 95–105. | MR | Zbl
, ,[13] On groups with isolated conjugacy classes, Izv. Vyssh. Uchebn. Zaved. Mat. 25 (1981), 40–45. | MR | Zbl
,[14] An overview of graphs associated with character degrees and conjugacy class sizes in finite groups, Rocky Mountain J. Math. 38 (2008), 175–211. | MR | Zbl
,[15] Cycles and bipartite graph on conjugacy class of groups, Rend. Semin. Mat. Univ. Padova 123 (2010), 233–247. | Numdam | MR | Zbl
,[16] Prime graph components of finite groups, J. Algebra 69 (1981), 487–513. | MR | Zbl
,