@article{RSMUP_2014__132__61_0, author = {Fukasawa, Satoru and Miura, Kei}, title = {Galois points for a plane curve and its dual curve}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {61--74}, publisher = {Seminario Matematico of the University of Padua}, volume = {132}, year = {2014}, mrnumber = {3276826}, zbl = {06379716}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2014__132__61_0/} }
TY - JOUR AU - Fukasawa, Satoru AU - Miura, Kei TI - Galois points for a plane curve and its dual curve JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2014 SP - 61 EP - 74 VL - 132 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2014__132__61_0/ LA - en ID - RSMUP_2014__132__61_0 ER -
%0 Journal Article %A Fukasawa, Satoru %A Miura, Kei %T Galois points for a plane curve and its dual curve %J Rendiconti del Seminario Matematico della Università di Padova %D 2014 %P 61-74 %V 132 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2014__132__61_0/ %G en %F RSMUP_2014__132__61_0
Fukasawa, Satoru; Miura, Kei. Galois points for a plane curve and its dual curve. Rendiconti del Seminario Matematico della Università di Padova, Tome 132 (2014), pp. 61-74. http://www.numdam.org/item/RSMUP_2014__132__61_0/
[1] Geometry of algebraic curves, Vol. I. Grundlehren der Mathematischen Wissenschaften 267, Springer-Verlag, New York, 1985. | MR | Zbl
, , and ,[2] On plane algebraic curves, Chinese J. Math. 6 (1978), 185–189. | MR | Zbl
,[3] Alcune applicazioni di un classico procedimento di Castelnuovo, Seminari di geometria, 1982-1983 (Bologna, 1982/1983), Univ. Stud. Bologna, Bologna, 1984, 17–43. | MR | Zbl
,[4] Galois points for a plane curve in arbitrary characteristic, Proceedings of the IV Iberoamerican conference on complex geometry, Geom. Dedicata 139 (2009), 211–218. | MR | Zbl
,[5] Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986), 375–386. | MR | Zbl
,[6] Galois group at each point for some self-dual curves, Geometry 2013 (2013), Article ID 369420, 6 pages. | Zbl
and ,[7] Tangency and duality, In: Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conference Proceedings, 6, Amer. Math. Soc., Providence, RI, 1986, pp. 163–226. | MR | Zbl
,[8] Galois points for plane curves and Cremona transformations, J. Algebra 320 (2008), 987–995. | MR | Zbl
,[9] Field theory for function fields of plane quartic curves, J. Algebra 226 (2000), 283–294. | MR | Zbl
and ,[10] Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Math. 767, Springer-Verlag, Berlin, 1979. | MR | Zbl
,[11] Geometry of projective algebraic curves, Marcel Dekker, Inc., New York, 1984. | MR | Zbl
,[12] Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin, 1993. | MR | Zbl
,[13] Function field theory of plane curves by dual curves, J. Algebra 239 (2001), 340–355. | MR | Zbl
,[14] Galois points for plane rational curves, Far East J. Math. Sci. 25 (2007), 273–284. | MR | Zbl
,[15] Rational curve with Galois point and extendable Galois automorphism, J. Algebra 321 (2009), 1463–1472. | MR | Zbl
,