Galois points for a plane curve and its dual curve
Rendiconti del Seminario Matematico della Università di Padova, Tome 132 (2014), pp. 61-74.
@article{RSMUP_2014__132__61_0,
     author = {Fukasawa, Satoru and Miura, Kei},
     title = {Galois points for a plane curve and its dual curve},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {61--74},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {132},
     year = {2014},
     mrnumber = {3276826},
     zbl = {06379716},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2014__132__61_0/}
}
TY  - JOUR
AU  - Fukasawa, Satoru
AU  - Miura, Kei
TI  - Galois points for a plane curve and its dual curve
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2014
SP  - 61
EP  - 74
VL  - 132
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2014__132__61_0/
LA  - en
ID  - RSMUP_2014__132__61_0
ER  - 
%0 Journal Article
%A Fukasawa, Satoru
%A Miura, Kei
%T Galois points for a plane curve and its dual curve
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2014
%P 61-74
%V 132
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2014__132__61_0/
%G en
%F RSMUP_2014__132__61_0
Fukasawa, Satoru; Miura, Kei. Galois points for a plane curve and its dual curve. Rendiconti del Seminario Matematico della Università di Padova, Tome 132 (2014), pp. 61-74. http://www.numdam.org/item/RSMUP_2014__132__61_0/

[1] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves, Vol. I. Grundlehren der Mathematischen Wissenschaften 267, Springer-Verlag, New York, 1985. | MR | Zbl

[2] H. C. Chang, On plane algebraic curves, Chinese J. Math. 6 (1978), 185–189. | MR | Zbl

[3] C. Ciliberto, Alcune applicazioni di un classico procedimento di Castelnuovo, Seminari di geometria, 1982-1983 (Bologna, 1982/1983), Univ. Stud. Bologna, Bologna, 1984, 17–43. | MR | Zbl

[4] S. Fukasawa, Galois points for a plane curve in arbitrary characteristic, Proceedings of the IV Iberoamerican conference on complex geometry, Geom. Dedicata 139 (2009), 211–218. | MR | Zbl

[5] R. Hartshorne, Generalized divisors on Gorenstein curves and a theorem of Noether, J. Math. Kyoto Univ. 26 (1986), 375–386. | MR | Zbl

[6] H. Hayashi and H. Yoshihara, Galois group at each point for some self-dual curves, Geometry 2013 (2013), Article ID 369420, 6 pages. | Zbl

[7] S. L. Kleiman, Tangency and duality, In: Proceedings of the 1984 Vancouver conference in algebraic geometry, CMS Conference Proceedings, 6, Amer. Math. Soc., Providence, RI, 1986, pp. 163–226. | MR | Zbl

[8] K. Miura, Galois points for plane curves and Cremona transformations, J. Algebra 320 (2008), 987–995. | MR | Zbl

[9] K. Miura and H. Yoshihara, Field theory for function fields of plane quartic curves, J. Algebra 226 (2000), 283–294. | MR | Zbl

[10] M. Namba, Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Math. 767, Springer-Verlag, Berlin, 1979. | MR | Zbl

[11] M. Namba, Geometry of projective algebraic curves, Marcel Dekker, Inc., New York, 1984. | MR | Zbl

[12] H. Stichtenoth, Algebraic function fields and codes, Universitext, Springer-Verlag, Berlin, 1993. | MR | Zbl

[13] H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra 239 (2001), 340–355. | MR | Zbl

[14] H. Yoshihara, Galois points for plane rational curves, Far East J. Math. Sci. 25 (2007), 273–284. | MR | Zbl

[15] H. Yoshihara, Rational curve with Galois point and extendable Galois automorphism, J. Algebra 321 (2009), 1463–1472. | MR | Zbl