@article{RSMUP_2014__131__263_0, author = {Magni, Annibale and Mantegazza, Carlo}, title = {A {Note} on {Grayson{\textquoteright}s} theorem}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {263--280}, publisher = {Seminario Matematico of the University of Padua}, volume = {131}, year = {2014}, mrnumber = {3217762}, zbl = {1296.53133}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2014__131__263_0/} }
TY - JOUR AU - Magni, Annibale AU - Mantegazza, Carlo TI - A Note on Grayson’s theorem JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2014 SP - 263 EP - 280 VL - 131 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2014__131__263_0/ LA - en ID - RSMUP_2014__131__263_0 ER -
%0 Journal Article %A Magni, Annibale %A Mantegazza, Carlo %T A Note on Grayson’s theorem %J Rendiconti del Seminario Matematico della Università di Padova %D 2014 %P 263-280 %V 131 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2014__131__263_0/ %G en %F RSMUP_2014__131__263_0
Magni, Annibale; Mantegazza, Carlo. A Note on Grayson’s theorem. Rendiconti del Seminario Matematico della Università di Padova, Tome 131 (2014), pp. 263-280. http://www.numdam.org/item/RSMUP_2014__131__263_0/
[1] The normalized curve shortening flow and homothetic solutions, J. Diff. Geom. 23 (1986), no. 2, pp. 175–196. | MR | Zbl
- ,[2] The zero set of a solution of a parabolic equation, J. Reine Angew. Math. 390 (1988), pp. 79–96. | MR | Zbl
,[3] On the formation of singularities in the curve shortening flow, J. Diff. Geom. 33 (1991), pp. 601–633. | MR | Zbl
,[4] Parabolic equations for curves on surfaces. II. Intersections, blow–up and generalized solutions, Ann. of Math. (2) 133 (1991), no. 1, pp. 171–215. | MR | Zbl
,[5] Some nonlinear problems in Riemannian geometry, Springer–Verlag, 1998. | MR | Zbl
,[6] Interior estimates for hypersurfaces moving by mean curvature, Invent. Math. 105 (1991), no. 3, pp. 547–569. | MR | Zbl
- ,[7] A stable manifold theorem for the curve shortening equation, Comm. Pure Appl. Math. 40(1987), no. 1, pp. 119–139. | MR | Zbl
- ,[8] An isoperimetric inequality with applications to curve shortening, Duke Math. J. 50 (1983), no. 4, pp. 1225–1229. | MR | Zbl
,[9] Curve shortening makes convex curves circular, Invent. Math. 76 (1984), pp. 357–364. | MR | Zbl
,[10] The heat equation shrinking convex plane curves, J. Diff. Geom. 23 (1986), pp. 69–95. | MR | Zbl
- ,[11] The heat equation shrinks embedded plane curves to round points, J. Diff. Geom. 26(1987), pp. 285–314. | MR | Zbl
,[12] Four–manifolds with positive curvature operator, J. Diff. Geom. 24 (1986), no. 2, pp. 153–179. | MR | Zbl
,[13] Asymptotic behavior for singularities of the mean curvature flow, J. Diff. Geom. 31(1990), pp. 285–299. | MR | Zbl
,[14] Local and global behaviour of hypersurfaces moving by mean curvature, Proc. Sympos. Pure Math 54(1993), pp. 175–191. | MR | Zbl
,[15] A distance comparison principle for evolving curves, Asian J. Math. 2 (1998), pp. 127–133. | MR | Zbl
,[16] Singularities of mean curvatureflow of surfaces, http://www.math.ethz.ch/~ilmanen/papers/sing.ps, 1995.
,[17] Curves homothetically shrinking by curvature, CvGmt Preprint Server – http://cvgmt.sns.it, 2009. | MR
- ,[18] Motion by curvature of planar networks II, ArXiv Preprint Server – http://arxiv.org, 2013.
- - ,[19] Lecture notes on mean curvature flow, Progress in Mathematics, vol. 290, Birkhäuser/Springer Basel AG, Basel, 2011. | MR | Zbl
,[20] A density function and the structure of singularities of the mean curvature flow, Calc. Var. Partial Differential Equations 2 (1994), 443–480. | MR | Zbl
,[21] A local regularity theorem for mean curvature flow, Ann. of Math. (2) 161 (2005), no. 3, 1487–1519. | MR | Zbl
,