@article{RSMUP_2014__131__23_0, author = {Calaque, Damien}, title = {A {PBW} theorem for inclusions of (sheaves of) {Lie} algebroids}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {23--48}, publisher = {Seminario Matematico of the University of Padua}, volume = {131}, year = {2014}, mrnumber = {3217749}, zbl = {06329756}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2014__131__23_0/} }
TY - JOUR AU - Calaque, Damien TI - A PBW theorem for inclusions of (sheaves of) Lie algebroids JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2014 SP - 23 EP - 48 VL - 131 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2014__131__23_0/ LA - en ID - RSMUP_2014__131__23_0 ER -
%0 Journal Article %A Calaque, Damien %T A PBW theorem for inclusions of (sheaves of) Lie algebroids %J Rendiconti del Seminario Matematico della Università di Padova %D 2014 %P 23-48 %V 131 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2014__131__23_0/ %G en %F RSMUP_2014__131__23_0
Calaque, Damien. A PBW theorem for inclusions of (sheaves of) Lie algebroids. Rendiconti del Seminario Matematico della Università di Padova, Tome 131 (2014), pp. 23-48. http://www.numdam.org/item/RSMUP_2014__131__23_0/
[1] When is the self-intersection of a subvariety a fibration?, Advances in Math., 231 (2012), no. 2, 815–842. | MR | Zbl
, ,[2] Atiyah classes and equivariant connections on homogeneous spaces, Travaux Mathématiques, 20 (2012), Special Issue dedicated to Nikolai Neumaier, 29–82. | MR
,[3] From Lie theory to algebraic geometry and back, in Interactions between Algebraic Geometry and Noncommutative Algebra, Oberwolfach Report no. 22/2010, 1331-1334.
,[4] PBW for an inclusion of Lie algebras, Journal of Algebra, 378 (2013), p. 64–79. | MR | Zbl
, , ,[5] On the Lie algebroid of a derived self-intersection, preprint arXiv:1306.5260. | Zbl
, , ,[6] Hochschild cohomology and Atiyah classes, Advances in Math., 224 (2010), no. 5, 1839–1889. | MR | Zbl
, ,[7] Classes to Homotopy Leibniz Algebras, preprint arXiv:1204.1075. | MR
, , ,[8] Poincaré-Birkhoff-Witt type results for inclusions of Lie algebras, Diploma Thesis available at http://www.cip.ifi.lmu.de/~grinberg/algebra/pbw.pdf.
,[9] Rozansky-Witten invariants via Atiyah classes, Compositio Math., 115 (1999), no. 1, 71–113. | MR | Zbl
,[10] Free Lie algebroids and the space of paths, Selecta Math. NS, 13 (2007), no. 2, 277–319. | MR | Zbl
,[11] Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, Memoirs of the Amer. Math. Soc., 212 (2011), 133 pp. | MR | Zbl
,[12] Differential forms on general commutative algebras, Trans. Amer. Math. Soc., 108 (1963), 195–222. | MR | Zbl
,[13] Quantum groupoids, Comm. Math. Phys., 216 (2001), no. 3, 539–581. | MR | Zbl
,[14] Dolbeault dga of formal neighborhoods and -algebroids, draft available at http://www.math.psu.edu/yu/papers/DolbeaultDGA.pdf.
,