@article{RSMUP_2014__131__217_0, author = {Colombo, R. M. and Rossi, E.}, title = {On the {Micro-Macro} limit in traffic flow}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {217--236}, publisher = {Seminario Matematico of the University of Padua}, volume = {131}, year = {2014}, mrnumber = {3217759}, zbl = {1295.35314}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2014__131__217_0/} }
TY - JOUR AU - Colombo, R. M. AU - Rossi, E. TI - On the Micro-Macro limit in traffic flow JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2014 SP - 217 EP - 236 VL - 131 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2014__131__217_0/ LA - en ID - RSMUP_2014__131__217_0 ER -
%0 Journal Article %A Colombo, R. M. %A Rossi, E. %T On the Micro-Macro limit in traffic flow %J Rendiconti del Seminario Matematico della Università di Padova %D 2014 %P 217-236 %V 131 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2014__131__217_0/ %G en %F RSMUP_2014__131__217_0
Colombo, R. M.; Rossi, E. On the Micro-Macro limit in traffic flow. Rendiconti del Seminario Matematico della Università di Padova, Tome 131 (2014), pp. 217-236. http://www.numdam.org/item/RSMUP_2014__131__217_0/
[1] A rigorous treatment of a follow-the-leader traffic model with traffic lights present. SIAM J. Appl. Math., 63(1):149–168 (electronic), 2002. | MR | Zbl
, , , and .[2] Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem. | MR | Zbl
.[3] A 2-phase traffic model based on a speed bound. SIAM J. Appl. Math., 70(7):2652–2666, 2010. | MR | Zbl
, and .[4] A Hólder continuous ODE related to traffic flow. Proc. Roy. Soc. Edinburgh Sect. A, 133(4):759–772, 2003. | MR | Zbl
and .[5] Analyse et modelisation du trafic routier: Passage du microscopique au macroscopique. Master’s thesis, Ecole des Ponts ParisTech, 2011.
.[6] Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002. | MR | Zbl
.[7] On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A., 229:317–345, 1955. | MR | Zbl
and .[8] Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations. LLNL report UCRL-ID-113855. National Aeronautics and Space Administration, Lewis Research Center, 1993.
and .[9] Measure theory and integration. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York, 1987. A Wiley-Interscience Publication. | MR | Zbl
.[10] Shock waves on the highway. Operations Res., 4:42–51, 1956. | MR
.[11] On the micro–macro limit in traffic flow. Master’s thesis, Università Cattolica del Sacro Cuore, Brescia, 2012.
.[12] Transportation Research Board of the National Academies. 75 Years of the Fundamental Diagram for Traffic Flow Theory, Greenshields Symposium, Transportation Research Circular E-C149, Washington, June 2011.