@article{RSMUP_2014__131__15_0, author = {Fuchs, L\'aszl\'o and Bum Lee, Sang}, title = {When all reduced strongly flat modules are projective}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {15--22}, publisher = {Seminario Matematico of the University of Padua}, volume = {131}, year = {2014}, mrnumber = {3217748}, zbl = {06329755}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2014__131__15_0/} }
TY - JOUR AU - Fuchs, László AU - Bum Lee, Sang TI - When all reduced strongly flat modules are projective JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2014 SP - 15 EP - 22 VL - 131 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2014__131__15_0/ LA - en ID - RSMUP_2014__131__15_0 ER -
%0 Journal Article %A Fuchs, László %A Bum Lee, Sang %T When all reduced strongly flat modules are projective %J Rendiconti del Seminario Matematico della Università di Padova %D 2014 %P 15-22 %V 131 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2014__131__15_0/ %G en %F RSMUP_2014__131__15_0
Fuchs, László; Bum Lee, Sang. When all reduced strongly flat modules are projective. Rendiconti del Seminario Matematico della Università di Padova, Tome 131 (2014), pp. 15-22. http://www.numdam.org/item/RSMUP_2014__131__15_0/
[1] Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. | MR | Zbl
,[2] Almost perfect domains, Coll. Math. 95(2003), 285–301. | MR | Zbl
and ,[3] Testing for cotorsionness over domains, Rendiconti Sem. Mat. Univ. Padova 118 (2007), 85–99. | Numdam | MR | Zbl
and ,[4] Modules over non-Noetherian Domains, Math. Surveys and Monographs, vol. 84 (Amer. Math. Society, Providence, 2001). | MR | Zbl
and ,[5] Independence in completions and endomorphism algebras, Forum Math. 1 (1989), 215–226. | MR | Zbl
and ,[6] Approximations and Endomorphism Algebras of Modules, Expositions in Math., vol. 41 (W. de Gruyter, 2006). | Zbl
and ,[7] Strongly flat modules over Matlis domains (submitted).
,[8] Cotorsion modules, Memoirs Amer. Math. Soc. 49 (1964). | MR | Zbl
,