@article{RSMUP_2014__131__159_0, author = {Robinson, James C. and Sadowski, Witold}, title = {A local smoothness criterion for solutions of the {3D} {Navier-Stokes} equations}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {159--178}, publisher = {Seminario Matematico of the University of Padua}, volume = {131}, year = {2014}, mrnumber = {3217755}, zbl = {1296.35123}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2014__131__159_0/} }
TY - JOUR AU - Robinson, James C. AU - Sadowski, Witold TI - A local smoothness criterion for solutions of the 3D Navier-Stokes equations JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2014 SP - 159 EP - 178 VL - 131 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2014__131__159_0/ LA - en ID - RSMUP_2014__131__159_0 ER -
%0 Journal Article %A Robinson, James C. %A Sadowski, Witold %T A local smoothness criterion for solutions of the 3D Navier-Stokes equations %J Rendiconti del Seminario Matematico della Università di Padova %D 2014 %P 159-178 %V 131 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2014__131__159_0/ %G en %F RSMUP_2014__131__159_0
Robinson, James C.; Sadowski, Witold. A local smoothness criterion for solutions of the 3D Navier-Stokes equations. Rendiconti del Seminario Matematico della Università di Padova, Tome 131 (2014), pp. 159-178. http://www.numdam.org/item/RSMUP_2014__131__159_0/
[1] Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space, Indiana Univ. Math. J., 36 (1987), pp. 149–166. | MR | Zbl
.[2] On the space–time regularity of -very weak solutions to the Navier—Stokes equations, Nonlinear Analysis, 58 (2004), pp. 703–717. | MR | Zbl
and .[3] Harmonic analysis tools for solving the incompressible Navier-Stokes equations, in S. Friedlander & D. Serre (Eds.) Handbook of Mathematical Fluid Dynamics, vol. 3, Elsevier, 2003. | MR | Zbl
.[4] Mathematical Geophysics, Oxford University Press, Oxford, 2006. | MR | Zbl
, , and .[5] Navier-Stokes equations. University of Chicago Press, Chicago, 1988. | MR | Zbl
and .[6] -solutions of Navier-Stokes equations and backward uniqueness, Russian Math. Surveys, 58 (2003), pp. 211–250. | MR | Zbl
, , and .[7] Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. | MR | Zbl
.[8] Necessary and sufficient conditions on local strong solvability of the Navier-Stokes system Applicable Analysis, Vol. 90, No. 1, January (2011), pp. 47–58. | MR | Zbl
, and .[9] On the Navier-Stokes initial value problem. I. Arch. Rational Mech. Anal., 16 (1964), pp. 269–315. | MR | Zbl
and .[10] An introduction to the Navier-Stokes initial-boundary value problem, Fundamental directions in Mathematical Fluid Dynamics, Birkhauser, Basel, 1–70, 2011. | MR | Zbl
.[11] The weight function approach to uniqueness of viscous flows in unbounded domains, Arch. Ratl Mech. Anal., 69, 37 (1979). | MR | Zbl
and .[12] Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system. J. Differential Equations, 62 (1986), pp. 186–212. | MR | Zbl
.[13] Recent developments in the Navier-Stokes problem, Chapman & Hall/CRC Research Notes in Mathematics, 431. Chapman & Hall/CRC, Boca Raton, FL, 2002. | MR | Zbl
.[14] Strong -solutions of the Navier-Stokes equations in with applications to weak solutions, Math. Zeit., 187 (1984), pp. 471–480. | MR | Zbl
,[15] Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63 (1934), pp. 193–248. | JFM | MR
.[16] Solutions of the 3D Navier-Stokes equations for initial data in : robustness of regularity and numerical verification of regularity for bounded sets of initial data in , J. Math. Anal. Appl., 400 (2013), pp. 76–85. | MR | Zbl
, and .[17] Introduction to semigroup theory for partial differential equations. Lectures notes, 2005. Available online at http://www.opencontent.org/openpub/
.[18] Lower bounds on blow up solutions of the three-dimensional Navier-Stokes equations in homogeneous Sobolev spaces, J. Math. Phys., 53 (2012), 115618. | MR | Zbl
, and .[19] Fourier Series in Several Variables with Applications to Partial Differential Equations, Taylor & Francis Group, LLC, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series Edt. Goong Chen, 2011. | MR | Zbl
.[20] Regularity of weak solutions of the Navier-Stokes equations. Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983), 497–503, Proc. Sympos. Pure Math., 45, Part 2, Amer. Math. Soc., Providence, RI, 1986. | MR | Zbl
.