@article{RSMUP_2014__131__151_0, author = {Banerjee, Abhishek}, title = {On the {Lie} transformation algebra of monoids in symmetric monoidal categories}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {151--158}, publisher = {Seminario Matematico of the University of Padua}, volume = {131}, year = {2014}, mrnumber = {3217754}, zbl = {06329761}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2014__131__151_0/} }
TY - JOUR AU - Banerjee, Abhishek TI - On the Lie transformation algebra of monoids in symmetric monoidal categories JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2014 SP - 151 EP - 158 VL - 131 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2014__131__151_0/ LA - en ID - RSMUP_2014__131__151_0 ER -
%0 Journal Article %A Banerjee, Abhishek %T On the Lie transformation algebra of monoids in symmetric monoidal categories %J Rendiconti del Seminario Matematico della Università di Padova %D 2014 %P 151-158 %V 131 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2014__131__151_0/ %G en %F RSMUP_2014__131__151_0
Banerjee, Abhishek. On the Lie transformation algebra of monoids in symmetric monoidal categories. Rendiconti del Seminario Matematico della Università di Padova, Tome 131 (2014), pp. 151-158. http://www.numdam.org/item/RSMUP_2014__131__151_0/
[1] Cohomology of monoids in monoidal categories. Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), 137-165, Contemp. Math., 202, Amer. Math. Soc., Providence, RI, 1997. | MR | Zbl
, , ,[2] Derivation algebras and multiplication algebras of semi-simple Jordan algebras. Ann. of Math. (2) 50 (1949), 866–874. | MR | Zbl
,[3] Inner derivations of alternative algebras over commutative rings. Algebra Number Theory 2 (2008), no. 8, 927–968. | MR | Zbl
, , ,[4] Inner derivations of non-associative algebras. Bull. Amer. Math. Soc. 55 (1949), 769–776. | MR | Zbl
,[5] An introduction to nonassociative algebras. Pure and Applied Mathematics, 22, Academic Press, New York-London 1966. | MR | Zbl
,