@article{RSMUP_2013__130__169_0, author = {Wang, Jialin and Liao, Dongni and Yu, Zefeng}, title = {H\"older continuity for sub-elliptic systems under the sub-quadratic controllable growth in {Carnot} groups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {169--202}, publisher = {Seminario Matematico of the University of Padua}, volume = {130}, year = {2013}, mrnumber = {3148637}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2013__130__169_0/} }
TY - JOUR AU - Wang, Jialin AU - Liao, Dongni AU - Yu, Zefeng TI - Hölder continuity for sub-elliptic systems under the sub-quadratic controllable growth in Carnot groups JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2013 SP - 169 EP - 202 VL - 130 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2013__130__169_0/ LA - en ID - RSMUP_2013__130__169_0 ER -
%0 Journal Article %A Wang, Jialin %A Liao, Dongni %A Yu, Zefeng %T Hölder continuity for sub-elliptic systems under the sub-quadratic controllable growth in Carnot groups %J Rendiconti del Seminario Matematico della Università di Padova %D 2013 %P 169-202 %V 130 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2013__130__169_0/ %G en %F RSMUP_2013__130__169_0
Wang, Jialin; Liao, Dongni; Yu, Zefeng. Hölder continuity for sub-elliptic systems under the sub-quadratic controllable growth in Carnot groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 130 (2013), pp. 169-202. http://www.numdam.org/item/RSMUP_2013__130__169_0/
[1] Un esempio di estremali discontinue per un problema variazionale di tipo ellitico. Boll. Unione Mat. Italiana 4 (1968), pp. 135-137. | MR
,[2] Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton Univ. Press, Princeton, 1983. | MR
,[3] Introduction to regularity theory for nonlinear elliptic systems. Birkhäuser, Berlin, 1993. | MR
,[4] Second order elliptic equations and elliptic systems. Science Press, Beijing, 2003.
- ,[5] Almost-everywhere regularity results for solutions of non linear elliptic systems. Manuscripta Math. 28 (1979), pp. 109-158, | MR
- ,[6] Sulla regolarità delle soluzioni deboli di una classe di sistemi ellittici quasilineari. Arch. Rat. Mech. Anal. 31 (1968), pp. 173-184. | MR
- ,[7] Partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation, Manuscripta Math. 103 (2000), pp. 267-298. | MR
- ,[8] Lectures on Geometric Measure Theory. Australian National University Press, Canberra, 1983. | MR
,[9] Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Annali Mat. Pura Appl. (4) 184 (2005), pp. 421-448. | MR
- - ,[10] The -harmonic approximation and the regularity of -harmonic maps. Calc. Var. Partial Differential Equations 20 (2004), pp. 235-256. | MR
- ,[11] Regularity for degenerate elliptic problems via -harmonic approximation. Ann. Inst. H. Poincaré Anal. Non Linèaire 21 (2004), pp. 735-766. | MR
- ,[12] Partial regularity of minimizers of quasiconvex integrals with subquadratic growth, Annali Mat. Pura Appl. (4) 175 (1998), pp. 141-164. | MR
- - ,[13] The method of A-harmonic approximation and optimal interior partial regularity for nonlinear elliptic systems under the controllable growth condition. J. Math. Anal. Appl. 335 (2007), pp. 20-42. | MR
- ,[14] Optimal interior partial regularity for nonlinear elliptic systems. Discrete Contin. Dyn. Syst. 27 (2010), pp. 981-993. | MR
- ,[15] Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hörmander type. J. European Math. Society 5 (2003), pp. 1-40. | MR
- ,[16] Hypoellipticity for linear degenerate elliptic systems in Carnot groups and applications, arXiv:math/0502569, pp. 27.
,[17] Partial regularity results for subelliptic systems in the Heisenberg group, Calc. Var. Partial Differential Equations 32 (2008), pp. 25-51. | MR
,[18] Optimal partial regularity for weak solutions of nonlinear sub-elliptic systems in Carnot groups. Nonlinear Analysis 72 (2010), pp. 4162-4187. | MR
- ,[19] An embedding theorem and the Harnak inequality for nonlinear subelliptic equations. Comm. Partial Differential Equations 18 (1993), pp. 1765-1794. | MR
- - ,[20] Embedding theorems into Lipschitz and BMO spaces and applications to quasilinear subelliptic differential equations. Publ. Mat. 40 (1996), pp. 301-329. | MR
,[21] Regularity for quasi-linear second order subelliptic equations. Comm. Pure Appl. Math. 45 (1992), pp. 77-96.
,[22] Regularity of quasi-linear equations in the Heisenberg group. Comm. Pure Appl. Math. 50 (1997), pp. 867-889. | MR
,[23] Regularity for quasilinear equation and 1-quasiconformal maps in Carnot groups. Math. Ann. 313 (1999), pp. 263-295. | MR
,[24] local regularity for the solutions of the -Laplacian on the Heisenberg group for . Z. Anal. Anwendungen 20 (2001), pp. 617-636. | MR
,[25] local regularity for the solutions of the -Laplacian on the Heisenberg group for . Comment. Math. Univ. Carolinae 44 (2003), pp. 33-56. | MR
,[26] Differentiability of solutions for the non-degenerate -Laplacian in the Heisenberg group. J. Differential Equations. 204 (2004), pp. 439-470. | MR
,[27] On the regularity of -harmonic functions in the Heisenberg group. Ph. D. Thesis, University of Pittsburgh, 2004.
,[28] Regularity results for quasilinear elliptic equations in the Heisenberg group. Math. Ann. 339 (2007), pp. 485-544. | MR
- ,[29] Gradient regularity for elliptic equations in the Heisenberg group. Advances in Mathematics 222 (2009), pp. 62-129. | MR
- - ,[30] Gradient bounds for the horizontal -Laplacian on a Carnot group and some applications. Manuscripta Math. 130 (2009), pp. 375-385. | MR
,[31] Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13 (1975), pp. 161-207. | MR
,[32] Regularity for minimizers of nonquadratic functionals: the case , J. Math. Anal. Appl. 140 (1989), pp. 115-135. | MR
- ,[33] Embedding theorems on Campanato-Morrey space for vector fields on Hörmander type. Approx. Theory Appl. 14 (1998), pp. 69-80. | MR
,