Perfect numbers and finite groups
Rendiconti del Seminario Matematico della Università di Padova, Tome 129 (2013), pp. 17-34.
@article{RSMUP_2013__129__17_0,
     author = {De Medts, Tom and Mar\'oti, Attila},
     title = {Perfect numbers and finite groups},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {17--34},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {129},
     year = {2013},
     mrnumber = {3090628},
     zbl = {1280.20026},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2013__129__17_0/}
}
TY  - JOUR
AU  - De Medts, Tom
AU  - Maróti, Attila
TI  - Perfect numbers and finite groups
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2013
SP  - 17
EP  - 34
VL  - 129
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2013__129__17_0/
LA  - en
ID  - RSMUP_2013__129__17_0
ER  - 
%0 Journal Article
%A De Medts, Tom
%A Maróti, Attila
%T Perfect numbers and finite groups
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2013
%P 17-34
%V 129
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2013__129__17_0/
%G en
%F RSMUP_2013__129__17_0
De Medts, Tom; Maróti, Attila. Perfect numbers and finite groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 129 (2013), pp. 17-34. http://www.numdam.org/item/RSMUP_2013__129__17_0/

[1] C. W. Anderson, The solution of Σ(n)=σ(n)/n=a/b , Φ(n)=ϕ(n)/n=a/b and some related considerations, unpublished manuscript (1974).

[2] T. De Medts, Recovering n from σ(n)/n , MathOverflow, http://mathoverflow.net/questions/56376.

[3] T. De Medts - M. Tărnăuceanu, Finite groups determined by an inequality of the orders of their subgroups, Bull. Belg. Math. Soc. Simon Stevin 15, no. 4 (2008), pp. 699-704. | MR

[4] B. Huppert, Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, New York, 1967. | MR

[5] T. Leinster, Perfect numbers and groups, arXiv:math/0104012.

[6] T. Leinster, Is there an odd-order group whose order is the sum of the orders of the proper normal subgroups?, Math. Overflow, http://mathoverflow.net/questions/54851.

[7] W. A. Stein et. al., Sage Mathematics Software (Version 4.6.1), The Sage Development Team, 2011, http://www.sagemath.org.

[8] W. G. Stanton - J. A. Holdener, Abundancy outlaws of the form (σ(N)+t)/N , J. Integer Sequences 10 (2007), Article 09.7.6. | MR

[9] http://java.ugent.be/~tdemedts/leinster.