@article{RSMUP_2012__127__235_0, author = {Ndiaye, Cheikh Birahim and Sch\"atzle, Reiner}, title = {A {Convergence} {Theorem} for {Immersions} with $L^2${-Bounded} {Second} {Fundamental} {Form}}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {235--248}, publisher = {Seminario Matematico of the University of Padua}, volume = {127}, year = {2012}, mrnumber = {2978007}, zbl = {1254.53091}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2012__127__235_0/} }
TY - JOUR AU - Ndiaye, Cheikh Birahim AU - Schätzle, Reiner TI - A Convergence Theorem for Immersions with $L^2$-Bounded Second Fundamental Form JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2012 SP - 235 EP - 248 VL - 127 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2012__127__235_0/ LA - en ID - RSMUP_2012__127__235_0 ER -
%0 Journal Article %A Ndiaye, Cheikh Birahim %A Schätzle, Reiner %T A Convergence Theorem for Immersions with $L^2$-Bounded Second Fundamental Form %J Rendiconti del Seminario Matematico della Università di Padova %D 2012 %P 235-248 %V 127 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2012__127__235_0/ %G en %F RSMUP_2012__127__235_0
Ndiaye, Cheikh Birahim; Schätzle, Reiner. A Convergence Theorem for Immersions with $L^2$-Bounded Second Fundamental Form. Rendiconti del Seminario Matematico della Università di Padova, Tome 127 (2012), pp. 235-248. http://www.numdam.org/item/RSMUP_2012__127__235_0/
[1] Vorlesungen Ueber Differentialgeometrie III, Springer (1929).
,[2] A theorem on geometric rigidity and the derivation on nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55, no. 11 (2002), pp. 1461-1506. | MR | Zbl
- - ,[3] Gravitational radiation in an expanding universe, J. Math. Phys., 9 (1968), pp. 598-604. | JFM | Zbl
,[4] Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch., C28 (1973), pp. 693-703.
,[5] Second Fundamental Form for Varifolds and the Existence of Surfaces Minimizing Curvature. Indiana Univ. Math. J., 35, No 1 (1986), pp. 45-71. | MR | Zbl
,[6] Removability of point singularity of Willmore surfaces, Ann. of Math., 160, no. 1, pp. 315-357. | MR | Zbl
- ,[7] A compactness theorem for surfaces with -bounded second fundamental form, Math. Ann., 270 (1985), pp. 223-234. | MR | Zbl
,[8] The Willmore boundary problem, Cal. Var. PDE, 37 (2010), pp. 275-302. | MR | Zbl
,[9] Lectures on Geometric Measure Theory, Proceedings of the Center for Mathematical Analysis Austrian National University, Volume 3. | MR | Zbl
,[10] Existence of surfaces minimizing the Willmore functional, Comm. Anal. Geom., Vol 1, no. 2 (1993), pp. 281-326. | MR | Zbl
,[11] Über konforme Geometrie I: Grundlagen der Konformen Flächentheorie, Abh. Math. Sem. Hamburg (1923), pp. 31-56. | JFM
,[12] Note on embedded surfaces, Ann. Stiint. Univ. Al. I. Cuza Iasi, Sect. Ia Mat. (N. S) 11B (1965), pp. 493-496. | MR | Zbl
,