@article{RSMUP_2012__127__1_0, author = {Kaya, Yusuf}, title = {On the {Components} of the {Push-out} {Space} with {Certain} {Indices}}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {1--16}, publisher = {Seminario Matematico of the University of Padua}, volume = {127}, year = {2012}, mrnumber = {2977996}, zbl = {1247.53070}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2012__127__1_0/} }
TY - JOUR AU - Kaya, Yusuf TI - On the Components of the Push-out Space with Certain Indices JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2012 SP - 1 EP - 16 VL - 127 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2012__127__1_0/ LA - en ID - RSMUP_2012__127__1_0 ER -
%0 Journal Article %A Kaya, Yusuf %T On the Components of the Push-out Space with Certain Indices %J Rendiconti del Seminario Matematico della Università di Padova %D 2012 %P 1-16 %V 127 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2012__127__1_0/ %G en %F RSMUP_2012__127__1_0
Kaya, Yusuf. On the Components of the Push-out Space with Certain Indices. Rendiconti del Seminario Matematico della Università di Padova, Tome 127 (2012), pp. 1-16. http://www.numdam.org/item/RSMUP_2012__127__1_0/
[1] Immersions with a parallel normal field. Beiträge zur Algebra und Geometrie. Contributions to Algebra and Geometry, 41 (2) (2000), pp. 359-370. | MR | Zbl
- ,[2] The push-out space of spherically immersed surfaces. Algebras, Groups and Geometries, 18 (4) (2001), pp. 421-433. | MR | Zbl
- ,[3] The space of immersions parallel to a given immersion. J. London Math. Soc., 50 (2) (1994), pp. 404-416. | MR | Zbl
- ,[4] Partial tubes about immersed manifolds. Geom. Dedicata, 54 (2) (1995), pp. 145-169. | MR | Zbl
- ,[5] From Calculus to Cohomology. De Rham cohomology and characteristic classes. Cambridge University Press, 1997. | MR | Zbl
- ,[6] Morse Theory. 5th ed., Princeton University Press, New Jersey, 1973. | MR | Zbl
,[7] Characteristic roots and vectors of a differentiable family of symmetric matrices. Lin. and Multilin. Alg., 2 (1973), pp. 159-162. | MR | Zbl
,[8] Critical Point Theory and Submanifold Geometry. Lecture Notes in Mathematics, 1353, Springer-Verlag, Berlin, 1988. | MR | Zbl
- ,