@article{RSMUP_2010__124__91_0, author = {Granieri, Luca}, title = {Metric currents and geometry of {Wasserstein} spaces}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {91--125}, publisher = {Seminario Matematico of the University of Padua}, volume = {124}, year = {2010}, mrnumber = {2752678}, zbl = {1210.35076}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2010__124__91_0/} }
TY - JOUR AU - Granieri, Luca TI - Metric currents and geometry of Wasserstein spaces JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2010 SP - 91 EP - 125 VL - 124 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2010__124__91_0/ LA - en ID - RSMUP_2010__124__91_0 ER -
%0 Journal Article %A Granieri, Luca %T Metric currents and geometry of Wasserstein spaces %J Rendiconti del Seminario Matematico della Università di Padova %D 2010 %P 91-125 %V 124 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2010__124__91_0/ %G en %F RSMUP_2010__124__91_0
Granieri, Luca. Metric currents and geometry of Wasserstein spaces. Rendiconti del Seminario Matematico della Università di Padova, Tome 124 (2010), pp. 91-125. http://www.numdam.org/item/RSMUP_2010__124__91_0/
[1] Lecture Notes on Transport Problems, in "Mathematical Aspects of Evolving Interfaces". Lecture Notes in Mathematics, 1812 (Springer, Berlin, 2003), pp. 1--52. | MR | Zbl
,[2] Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 2005. | MR | Zbl
- - ,[3] Currents in Metric Spaces, Acta Mathematica, 185, no. 1 (2000), pp. 1--80. | MR | Zbl
- ,[4] Topics on Analysis in Metric Spaces, Oxford Lectures Series in Mathematics and its Applications, 25, Oxford University Press, Oxford, 2004. | MR | Zbl
- ,[5] Minimal measures and minimizing closed normal one-currents, GAFA Geom. Funct. Anal., 9, no. 3 (1999), pp. 413--427. | MR | Zbl
,[6] Characterization of optimal shapes and masses through Monge-Kantorovich equation, Journal European Math. Soc., 3 (2001), pp. 139--168. | MR | Zbl
- ,[7] Extended Monge-Kantorovich Theory, in Optimal Transportation and Applications, Lecture Notes in Mathematics, 1813 (Springer, Berlin, 2003), pp. 91--121. | MR | Zbl
,[8] A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, no. 3 (2000), pp. 375--393. | MR | Zbl
- ,[9] Optimal mass transportation and Mather theory, J. Eur. Math. Soc. (JEMS), 9, no. 1 (2007), pp. 85--121. | MR
- ,[10] Global Minimizers of Autonomous Lagrangians. IMPA, Rio de Janeiro, 1999. | MR | Zbl
- ,[11] Minimal measures, one-dimensional currents and the Monge-Kantorovich problem, Calc. Var., 27, no. 1 (2006), pp. 1--23. | MR | Zbl
- - ,[12] Direct Methods in the Calculus of Variations, second edition, Springer, 2008. | MR | Zbl
,[13] Partial differential equations and Monge-Kantorovich mass transfer (survey paper), Current Developments in Mathematics, 1997, International Press (1999), edited by S. T. Yau. | MR | Zbl
,[14] Algebraic Topology. Springer, 1995. | MR | Zbl
,[15] Geometric Measure Theory. Springer (Berlin), 1969. | MR | Zbl
,[16] Differential forms on Wasserstein space and infinite-dimensional Hamiltonian systems, forthcoming on Memoirs AMS. | Zbl
- - ,[17] The geometry of optimal transportation, Acta Math., 177 (1996), pp. 113--161. | MR | Zbl
- ,[18] Cartesian currents in the calculus of variations. I. Cartesian currents. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 37. Springer-Verlag, Berlin, 1998. | MR | Zbl
- - ,[19] On action minimizing measures for the Monge-Kantorovich problem, NoDEA 14 (2007), pp. 125--152. | MR | Zbl
,[20] Mass Transportation Problems and Minimal Measures. Ph.D. Thesis in Mathematics, Pisa, 2005.
,[21] Geometric study of Wasserstein spaces: Euclidean spaces, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze IX, 2 (2010), pp. 297--323. | Numdam | MR | Zbl
,[22] The variational formulation of the Fokker-Plank equation, Siam J. Math. Anal., 29 (1998), pp. 1--17. | MR | Zbl
- - ,[23] Riemannian Geometry and Geometric Analysis. Springer, 2002. | MR | Zbl
,[24] Nonpositive Curvature: Geometric and Analytic Aspects. Lectures in Math. ETH Zurich, Birkhauser Verlag, Basel, 1997. | MR | Zbl
,[25] Kirszbraun's theorem and metric spaces of bounded curvature, GAFA Geom. Funct. Anal., 7 (1997), pp. 535--560. | MR | Zbl
- ,[26] The geometry of dissipative evolution equations: the porus medium equation, Comm. Partial Differential Equations 26, no. 1-2 (2001), pp. 101--174. | MR | Zbl
,[27] Stochastics and Analysis on Metric Spaces, lecture notes in preparation.
,[28] Metric spaces of lower bounded curvature, Exposition. Math., 17, no. 1 (1999), pp. 35--47. | MR | Zbl
,[29] Probability Measures on Metric Spaces of Nonpositive Curvature, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), pp. 357--390, Contemp. Math., 338, AMS, Providence, RI, 2003. | MR | Zbl
,[30] On the geometry of metric measure spaces. I, Acta Math., 196, no.1 (2006), pp. 65--131. | MR | Zbl
,[31] Topics in Mass Transportation. Graduate Studies in mathematics, 58, AMS, Providence, RI, 2003. | MR | Zbl
,[32] Optimal Transport, Old and New. Springer, 2009. | MR | Zbl
,[33] Isoperimetric inequalities of euclidean type in metric spaces, GAFA, Geom. funct. anal., Vol. 15 (2005), pp. 534--554. | MR | Zbl
,[34] Flat convergence for integral currents in metric spaces, Calc. Var., 28 (2007), pp. 139--160. | MR | Zbl
,