@article{RSMUP_2010__123__191_0, author = {Caselles, V. and Chambolle, A. and Novaga, M.}, title = {Some remarks on uniqueness and regularity of {Cheeger} sets}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {191--202}, publisher = {Seminario Matematico of the University of Padua}, volume = {123}, year = {2010}, mrnumber = {2683297}, zbl = {1198.49042}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2010__123__191_0/} }
TY - JOUR AU - Caselles, V. AU - Chambolle, A. AU - Novaga, M. TI - Some remarks on uniqueness and regularity of Cheeger sets JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2010 SP - 191 EP - 202 VL - 123 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2010__123__191_0/ LA - en ID - RSMUP_2010__123__191_0 ER -
%0 Journal Article %A Caselles, V. %A Chambolle, A. %A Novaga, M. %T Some remarks on uniqueness and regularity of Cheeger sets %J Rendiconti del Seminario Matematico della Università di Padova %D 2010 %P 191-202 %V 123 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2010__123__191_0/ %G en %F RSMUP_2010__123__191_0
Caselles, V.; Chambolle, A.; Novaga, M. Some remarks on uniqueness and regularity of Cheeger sets. Rendiconti del Seminario Matematico della Università di Padova, Tome 123 (2010), pp. 191-202. http://www.numdam.org/item/RSMUP_2010__123__191_0/
[1] Uniqueness of the Cheeger set of a convex body. To appear in Nonlinear Analysis, TMA. | MR | Zbl
- ,[2] Evolution of Convex Sets in the Plane by the Minimizing Total Variation Flow, Interfaces and Free Boundaries, 7 (2005), pp. 29--53. | MR | Zbl
- - ,[3] A characterization of convex calibrable sets in , Math. Ann., 332 (2005), pp. 329--366. | MR | Zbl
- - ,[4] Corso introduttivo alla teoria geometrica della misura ed alle superfici minime, Scuola Normale Superiore, Pisa, 1997. | MR | Zbl
,[5] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, 2000. | MR | Zbl
- - ,[6] The Total Variation Flow in , J. Differential Equations, 184 (2002), pp. 475--525. | MR | Zbl
- - ,[7] On the selection of maximal Cheeger sets, Differential and Integral Equations, 20 (9) (2007), pp. 991--1004. | MR
- - ,[8] Regularity of minimal boundaries with obstacles, Rend. Sem. Mat. Univ. Padova, 66 (1982), pp. 129--135. | Numdam | MR | Zbl
- ,[9] The obstacle problem revisited, The Journal of Fourier Analysis and Applications, 4 (1998), pp. 383--402. | MR | Zbl
,[10] On the rectifiability of domains with finite perimeter, Ann. Scuola Normale Superiore di Pisa, 3 (1976), pp. 177--186. | Numdam | MR | Zbl
- ,[11] On a weighted total variation minimization problem, J. Funct. Anal., 250 (2007), pp. 214--226. | MR | Zbl
- ,[12] Approximation of maximal Cheeger sets by projection, Preprint (2007). | Numdam | MR
- - ,[13] Uniqueness of the Cheeger set of a convex body, Pacific Journal of Mathematics, 232 (1) (2007), pp. 77--90. | MR
- - ,[14] An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, 20 (2004), pp. 89--97. | MR
,[15] A lower bound for the smallest eigenvalue of the Laplacian, Problems in Analysis, Princeton Univ. Press, Princeton (New Jersey, 1970), pp. 195--199. | MR | Zbl
,[16] Elliptic partial Differential Equations of Second Order, Springer Verlag, 1998.
- ,[17] On the equation of surfaces of prescribed mean curvature. Existence and uniqueness without boundary conditions, Invent. Math., 46 (1978), pp. 111--137. | MR | Zbl
,[18] Minimal boundaries enclosing a given volume, Manuscripta Math., 34 (1981), pp. 381--395. | MR | Zbl
- - ,[19] On the regularity of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. Journal, 32 (1983), pp. 25--37. | MR | Zbl
- - ,[20] The first eigenvalue of the Laplacian, isoperimetric constants, and the max-flow min-cut theorem, Arch. Math., 87 (1) (2006), pp. 75--85. | MR | Zbl
,[21] Numerical approximation of the first eigenpair of the p-laplacian using finite elements and the penalty method, Numer. Funct. Anal. Optim., 18 (3-4) (1997), pp. 389--399. | MR | Zbl
- ,[22] Isoperimetric estimates for the first eigenvalue of the -Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolinae, 44 (2003), pp. 659--667. | MR | Zbl
- ,[23] Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math., 225 (1) (2006), pp. 103--118. | MR | Zbl
, ,[24] The -Laplace eigenvalue problem as and Cheeger sets in a Finsler metric, J. Convex Anal., 15 (3) (2008), pp. 623--634. | MR | Zbl
- ,[25] Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in , Arch. Rat. Mech. Anal., 55 (1974), pp. 357--382. | MR | Zbl
,[26] Asymptotic growth for the parabolic equation of prescribed mean curvature, J. Differential Equations, 51 (3) (1984), pp. 326--358. | MR | Zbl
- ,[27] Maximal flow through a domain, Math. Programming, 26 (2) (1983), pp. 123--143. | MR | Zbl
,[28] Area minimizing sets subject to a volume constraint in a convex set, J. Geom. Anal., 7 (1997), pp. 653--677. | MR | Zbl
- ,[29] Boundary regularity for solutions to various capillarity and free boundary problems, Comm. in Partial Differential Equations, 2 (1977), 323--357. | MR | Zbl
,