@article{RSMUP_2010__123__141_0, author = {P\v{r}{\'\i}hoda, Pavel}, title = {Fair-sized projective modules}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {141--168}, publisher = {Seminario Matematico of the University of Padua}, volume = {123}, year = {2010}, mrnumber = {2683295}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2010__123__141_0/} }
TY - JOUR AU - Příhoda, Pavel TI - Fair-sized projective modules JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2010 SP - 141 EP - 168 VL - 123 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2010__123__141_0/ LA - en ID - RSMUP_2010__123__141_0 ER -
Příhoda, Pavel. Fair-sized projective modules. Rendiconti del Seminario Matematico della Università di Padova, Tome 123 (2010), pp. 141-168. http://www.numdam.org/item/RSMUP_2010__123__141_0/
[1] Idempotent ideals of integral group rings, J. Algebra, 23 (1972), pp. 343--346. | MR | Zbl
,[2] Rings and categories of modules, Springer - Verlag, 1974. | MR | Zbl
- ,[3] Big projective modules are free, Illinois J. Math. (1963), pp. 24--31. | MR | Zbl
,[4] On semilocal rings, Israel J. Math., 81 (1993), pp. 203--211. | MR | Zbl
- ,[5] Methods of representation theory with applications to finite groups and orders, Vol. 1, Wiley-Interscience (1981). | MR
- ,[6] Enveloping algebras, Akademie - Verlag (Berlin, 1977). | MR | Zbl
,[7] Rank element of a projective module, Nagoya Math. J., 25 (1965), pp. 113--120. | MR | Zbl
,[8] Properties and examples of FCR-algebras, Manuscripta math., 104 (2001), pp. 443--450. | MR | Zbl
- - ,[9] The Kourovka notebook. Unsolved problems in group theory, 15th augm. ed, Novosibirsk Institut Matematiki (2002). | MR | Zbl
- ,[10] A first course in noncommutative rings, Springer, New York, 2001. | MR | Zbl
,[11] Noncommutative noetherian rings, AMS, Providence, R. I., 2001. | MR | Zbl
- ,[12] When a projective module is a direct sum of finitely generated modules, preprint, 2004.
,[13] Projective modules are determined by their radical factors, J. Pure Appl. Algebra, 210 (2007), pp. 827--835. | MR | Zbl
,[14] Integral group rings of solvable finite groups have no idempotent ideals, Arch. Math., 25 (1974), pp. 125--128. | MR | Zbl
,[15] Idempotent ideals in P.I. rings, Journal London Math. Soc. (2), 14 (1976), pp. 120--122. | MR | Zbl
- ,[16] Induced representations and projective modules, Ann. of Math., 71 (1960), pp. 552--578. | MR | Zbl
,[17] The Grothendieck ring of a finite group, Topology, 2 (1963), pp. 85--110. | MR | Zbl
,[18] Projective modules and their trace ideals, Comm. Algebra, 8 (19) (1980), pp. 1873--1901. | MR | Zbl
,