Fair-sized projective modules
Rendiconti del Seminario Matematico della Università di Padova, Tome 123 (2010), pp. 141-168.
@article{RSMUP_2010__123__141_0,
     author = {P\v{r}{\'\i}hoda, Pavel},
     title = {Fair-sized projective modules},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {141--168},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {123},
     year = {2010},
     mrnumber = {2683295},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2010__123__141_0/}
}
TY  - JOUR
AU  - Příhoda, Pavel
TI  - Fair-sized projective modules
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2010
SP  - 141
EP  - 168
VL  - 123
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2010__123__141_0/
LA  - en
ID  - RSMUP_2010__123__141_0
ER  - 
%0 Journal Article
%A Příhoda, Pavel
%T Fair-sized projective modules
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2010
%P 141-168
%V 123
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2010__123__141_0/
%G en
%F RSMUP_2010__123__141_0
Příhoda, Pavel. Fair-sized projective modules. Rendiconti del Seminario Matematico della Università di Padova, Tome 123 (2010), pp. 141-168. http://www.numdam.org/item/RSMUP_2010__123__141_0/

[1] T. Akasaki, Idempotent ideals of integral group rings, J. Algebra, 23 (1972), pp. 343--346. | MR | Zbl

[2] F. W. Anderson - K. R. Fuller, Rings and categories of modules, Springer - Verlag, 1974. | MR | Zbl

[3] H. Bass, Big projective modules are free, Illinois J. Math. (1963), pp. 24--31. | MR | Zbl

[4] R. Camps - W. Dicks, On semilocal rings, Israel J. Math., 81 (1993), pp. 203--211. | MR | Zbl

[5] C. W. Curtis - I. Reiner, Methods of representation theory with applications to finite groups and orders, Vol. 1, Wiley-Interscience (1981). | MR

[6] J. Dixmier, Enveloping algebras, Akademie - Verlag (Berlin, 1977). | MR | Zbl

[7] A. Hattori, Rank element of a projective module, Nagoya Math. J., 25 (1965), pp. 113--120. | MR | Zbl

[8] H. Kraft - L. W. Small - N. R. Wallach, Properties and examples of FCR-algebras, Manuscripta math., 104 (2001), pp. 443--450. | MR | Zbl

[9] V. D. Mazurov - E. I. Khukhro, The Kourovka notebook. Unsolved problems in group theory, 15th augm. ed, Novosibirsk Institut Matematiki (2002). | MR | Zbl

[10] T. Y. Lam, A first course in noncommutative rings, Springer, New York, 2001. | MR | Zbl

[11] J. C. Mcconnell - J. C. Robson, Noncommutative noetherian rings, AMS, Providence, R. I., 2001. | MR | Zbl

[12] G. Puninski, When a projective module is a direct sum of finitely generated modules, preprint, 2004.

[13] P. Příhoda, Projective modules are determined by their radical factors, J. Pure Appl. Algebra, 210 (2007), pp. 827--835. | MR | Zbl

[14] K. W. Roggenkamp, Integral group rings of solvable finite groups have no idempotent ideals, Arch. Math., 25 (1974), pp. 125--128. | MR | Zbl

[15] L. W. Small - J. C. Robson, Idempotent ideals in P.I. rings, Journal London Math. Soc. (2), 14 (1976), pp. 120--122. | MR | Zbl

[16] R. G. Swan, Induced representations and projective modules, Ann. of Math., 71 (1960), pp. 552--578. | MR | Zbl

[17] R. G. Swan, The Grothendieck ring of a finite group, Topology, 2 (1963), pp. 85--110. | MR | Zbl

[18] J. M. Whitehead, Projective modules and their trace ideals, Comm. Algebra, 8 (19) (1980), pp. 1873--1901. | MR | Zbl