Notes on generalized (σ,τ)–derivation
Rendiconti del Seminario Matematico della Università di Padova, Tome 123 (2010), pp. 131-140.
@article{RSMUP_2010__123__131_0,
     author = {G\"olba\c{s}i, \"Oznur and Ko\c{c}, Emine},
     title = {Notes on generalized $({\sigma } ,{\tau } )${\textendash}derivation},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {131--140},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {123},
     year = {2010},
     mrnumber = {2683294},
     zbl = {1202.16036},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2010__123__131_0/}
}
TY  - JOUR
AU  - Gölbaşi, Öznur
AU  - Koç, Emine
TI  - Notes on generalized $({\sigma } ,{\tau } )$–derivation
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2010
SP  - 131
EP  - 140
VL  - 123
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2010__123__131_0/
LA  - en
ID  - RSMUP_2010__123__131_0
ER  - 
%0 Journal Article
%A Gölbaşi, Öznur
%A Koç, Emine
%T Notes on generalized $({\sigma } ,{\tau } )$–derivation
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2010
%P 131-140
%V 123
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2010__123__131_0/
%G en
%F RSMUP_2010__123__131_0
Gölbaşi, Öznur; Koç, Emine. Notes on generalized $({\sigma } ,{\tau } )$–derivation. Rendiconti del Seminario Matematico della Università di Padova, Tome 123 (2010), pp. 131-140. http://www.numdam.org/item/RSMUP_2010__123__131_0/

[1] N. Argaç - E. Albaş, Generalized derivations of prime rings, Algebra Coll., 11 (3) (2004), pp. 399--410. | MR | Zbl

[2] M. Ashraf - N. Rehman - M. A. Quadri, On (σ,τ)-derivations in certain clases of rings, Radovi Math., 9 (2) (1999), pp. 187--192. | MR | Zbl

[3] A. Asma - N. Rehman - A. Shakir, On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Mathematica Hungarica, 101 (2003), pp. 79--82. | MR | Zbl

[4] A. Asma - D. Kumar, Derivation which acts as a homomorphism or as an anti-homomorphism in prime ring, International Math. Forum, 2 (23) (2007), pp. 1105--1110. | MR | Zbl

[5] H. E. Bell - W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30 (1) (1987), pp. 92--101. | MR | Zbl

[6] H. E. Bell - L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta math. Hungarica, 53 (1989), pp. 339--346. | MR | Zbl

[7] Ö. Gölbaşi - N. Aydin, Some results on endomorphisms of prime ring which are (σ,τ)-derivation, East Asian Math. J., 18 (2) (2002), pp. 195--203. | Zbl

[8] B. Hvala, Generalized derivations in rings, Comm. Algebra, 26 (4) (1998), pp. 1147--1166. | MR | Zbl

[9] H. Kandamar - K. Kaya, Lie ideals and (σ,τ)-derivation in prime rings, Hacettepe Bull. Natural Sci. and Engeneering, 21 (1992), pp. 29--33. | Zbl

[10] N. Rehman, On commutativity of rings with generalized derivations, Math. J. Okayama Univ., 44 (2002), pp. 43--49. | MR | Zbl

[11] N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glasnik Mathematicki, 39 (59) (2004), pp. 27--30. | MR | Zbl

[12] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), pp. 1093--1100. | MR | Zbl