Commutativity Criterions using Normal Subgroup Lattices
Rendiconti del Seminario Matematico della Università di Padova, Tome 122 (2009), pp. 161-169.
@article{RSMUP_2009__122__161_0,
     author = {Breaz, Simion},
     title = {Commutativity {Criterions} using {Normal} {Subgroup} {Lattices}},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {161--169},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {122},
     year = {2009},
     mrnumber = {2582835},
     zbl = {1191.20023},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2009__122__161_0/}
}
TY  - JOUR
AU  - Breaz, Simion
TI  - Commutativity Criterions using Normal Subgroup Lattices
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2009
SP  - 161
EP  - 169
VL  - 122
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2009__122__161_0/
LA  - en
ID  - RSMUP_2009__122__161_0
ER  - 
%0 Journal Article
%A Breaz, Simion
%T Commutativity Criterions using Normal Subgroup Lattices
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2009
%P 161-169
%V 122
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2009__122__161_0/
%G en
%F RSMUP_2009__122__161_0
Breaz, Simion. Commutativity Criterions using Normal Subgroup Lattices. Rendiconti del Seminario Matematico della Università di Padova, Tome 122 (2009), pp. 161-169. http://www.numdam.org/item/RSMUP_2009__122__161_0/

[1] D. Arnold, Finite Rank Torsion-Free Abelian Groups and Rings, Lecture Notes in Math., 931 (Springer - Verlag, New-York, 1982). | MR | Zbl

[2] R. Brandl, On groups with certain lattices of normal subgroups, Arch. Math. (Basel), 47 (1986), pp. 6-11. | MR | Zbl

[3] S. Breaz - Gr. Cǎlugǎreanu, Every Abelian group is determined by a subgroup lattice, Stud. Sci. Math. Hung., 45 (2008), pp. 135-137. | MR | Zbl

[4] M. Curzio, Una caratterizzazione reticolare dei gruppi abeliani, Rend. Math. e. Appl., 24 (1965), pp. 1-10. | MR | Zbl

[5] L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New-York and London, 1970. | MR | Zbl

[6] K. Goodearl, Power cancellation of groups and modules, Pacific J. Math., 64 (1976), pp. 387-411. | MR | Zbl

[7] K. A. Kearnes - Á. Szendrei, Groups with identical subgroup lattices in all powers, J. Group Theory, 7 (2004), pp. 385-402. | MR | Zbl

[8] A. G. Kurosh, The Theory of Groups, Chelsea Publishing Company (NewYork, 1960). | MR | Zbl

[9] E. Lukács - P. P. Pálfy, Modularity of the subgroup lattice of a direct square, Arch. Math. (Basel), 46 (1986), pp. 18-19. | MR | Zbl

[10] M. D. Miller, On the lattice of normal subgroups of a direct product, Pacific J. Math., 60 (1975), pp. 153-158. | MR | Zbl

[11] P. P. Pálfy, Groups and Lattices, Groups St. Andrews 2001 in Oxford. Vol. II, London Math. Soc. Lecture Note Ser., 305, Cambridge Univ. Press (Cambridge, 2003), pp. 428-454. | MR | Zbl

[12] R. Schmidt, Subgroup Lattices of Groups, de Gruyter Expositions in Mathematics 14, de Gruyter (Berlin, 1994). | MR | Zbl

[13] E. A. Walker, Cancellation in direct sums of groups, Proc. A.M.S., 7 (1956), pp. 898-902. | MR | Zbl