On the b-ary expansion of an algebraic number
Rendiconti del Seminario Matematico della Università di Padova, Tome 118 (2007), pp. 217-233.
@article{RSMUP_2007__118__217_0,
     author = {Bugeaud, Yann},
     title = {On the $b$-ary expansion of an algebraic number},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {217--233},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {118},
     year = {2007},
     mrnumber = {2378397},
     zbl = {1174.11007},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2007__118__217_0/}
}
TY  - JOUR
AU  - Bugeaud, Yann
TI  - On the $b$-ary expansion of an algebraic number
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2007
SP  - 217
EP  - 233
VL  - 118
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2007__118__217_0/
LA  - en
ID  - RSMUP_2007__118__217_0
ER  - 
%0 Journal Article
%A Bugeaud, Yann
%T On the $b$-ary expansion of an algebraic number
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2007
%P 217-233
%V 118
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2007__118__217_0/
%G en
%F RSMUP_2007__118__217_0
Bugeaud, Yann. On the $b$-ary expansion of an algebraic number. Rendiconti del Seminario Matematico della Università di Padova, Tome 118 (2007), pp. 217-233. http://www.numdam.org/item/RSMUP_2007__118__217_0/

[1] B. Adamczewski, Transcendance «à la Liouville» de certains nombres réels, C. R. Acad. Sci. Paris, 338 (2004), pp. 511-514. | MR | Zbl

[2] B. Adamczewski - Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, Ann. of Math., 165 (2007), pp. 547-565. | MR

[3] B. Adamczewski - Y. Bugeaud, On the Maillet-Baker continued fractions, J. reine angew. Math., 606 (2007), pp. 105-121. | MR | Zbl

[4] B. Adamczewski - Y. Bugeaud, Dynamics for b-shifts and Diophantine approximation, Ergodic Theory Dynam. Systems. To appear. | MR | Zbl

[5] B. Adamczewski - Y. Bugeaud - F. Luca, Sur la complexité des nombres algébriques, C. R. Acad. Sci. Paris, 339 (2004), pp. 11-14. | MR | Zbl

[6] D. H. Bailey - J. M. Borwein - R. E. Crandall - C. Pomerance, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux, 16 (2004), pp. 487-518. | Numdam | MR | Zbl

[7] E. Bombieri - W. Gubler, Heights in Diophantine Geometry. New mathematical monographs 4, Cambridge University Press, 2006. | MR | Zbl

[8] E. Bombieri - A. J. Van Der Poorten, Some quantitative results related to Roth's theorem, J. Austral. Math. Soc. Ser. A, 45 (1988), pp. 233-248. | MR | Zbl

[9] P. Corvaja - U. Zannier, Some new applications of the subspace theorem, Compositio Math., 131 (2002), pp. 319-340. | MR | Zbl

[10] M. Cugiani, Sull'approssimabilità di un numero algebrico mediante numeri algebrici di un corpo assegnato, Boll. Un. Mat. Ital., 14 (1959), pp. 151-162. | MR | Zbl

[11] M. Cugiani, Sulla approssimabilità dei numeri algebrici mediante numeri razionali, Ann. Mat. Pura Appl., 48 (1959), pp. 135-145. | MR | Zbl

[12] J.-H. Evertse - H. P. Schlickewei, A quantitative version of the absolute subspace theorem, J. reine angew. Math., 548 (2002), pp. 21-127. | Zbl

[13] H. Locher, On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree, Acta Arith., 89 (1999), pp. 97-122. | Zbl

[14] K. Mahler, Lectures on Diophantine approximation, Part 1: g-adic numbers and Roth's theorem, University of Notre Dame, Ann Arbor, 1961. | Zbl

[15] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., 8 (1957), pp. 477-493. | Zbl

[16] D. Ridout, Rational approximations to algebraic numbers, Mathematika, 4 (1957), pp. 125-131. | Zbl

[17] D. Ridout, The p-adic generalization of the Thue-Siegel-Roth theorem, Mathematika, 5 (1958), pp. 40-48. | MR | Zbl

[18] T. Rivoal, On the bits couting function of real numbers. Preprint available at: http://www-fourier.ujf-grenoble.fr/ rivoal/articles.html | MR

[19] T. Schneider, Einführung in die transzendenten Zahlen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957. | MR | Zbl

[20] M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Transcendence properties of the exponential function in several variables. Grundlehren der Mathematischen Wissenschaften 326. Springer-Verlag, Berlin, 2000. | MR | Zbl