@article{RSMUP_2007__117__167_0, author = {Zannier, Umberto}, title = {Proof of the existence of certain triples of polynomials}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {167--174}, publisher = {Seminario Matematico of the University of Padua}, volume = {117}, year = {2007}, mrnumber = {2351792}, zbl = {1139.12005}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2007__117__167_0/} }
TY - JOUR AU - Zannier, Umberto TI - Proof of the existence of certain triples of polynomials JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2007 SP - 167 EP - 174 VL - 117 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2007__117__167_0/ LA - en ID - RSMUP_2007__117__167_0 ER -
%0 Journal Article %A Zannier, Umberto %T Proof of the existence of certain triples of polynomials %J Rendiconti del Seminario Matematico della Università di Padova %D 2007 %P 167-174 %V 117 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2007__117__167_0/ %G en %F RSMUP_2007__117__167_0
Zannier, Umberto. Proof of the existence of certain triples of polynomials. Rendiconti del Seminario Matematico della Università di Padova, Tome 117 (2007), pp. 167-174. http://www.numdam.org/item/RSMUP_2007__117__167_0/
[B] Ramified primes in the field of moduli of branched coverings of curves. J. Algebra, 125, no. 1 (1989), pp. 236-255. | MR | Zbl
,[L] Algebra, Springer-Verlag. | MR | Zbl
,[VW] Vanishing Polynomial Sums, Comm. in Algebra, 31, no. 2 (2003), pp. 751-772. | MR | Zbl
- ,[Vo] Groups as Galois groups, Cambridge Studies in Adv. Math., 53, Camb. Univ. Press, 1996. | MR | Zbl
,[Z1] Some remarks on the S-unit equation in function fields, Acta Arith. LXIV (1993), pp. 87-98. | MR | Zbl
,[Z2] On Davenport's bound for the degree of f 3 - g2 and Riemann Existence Theorem, Acta Arith., LXXI (1995), pp. 107-137. | MR | Zbl
,[Z3] Good reduction of certain covers P1 3 P1 , Israel J. of Math., 124 (2001), pp. 93-114. | MR | Zbl
,