@article{RSMUP_2006__116__299_0, author = {Labs, Oliver}, title = {A septic with 99 real nodes}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {299--313}, publisher = {Seminario Matematico of the University of Padua}, volume = {116}, year = {2006}, mrnumber = {2287352}, zbl = {1112.14043}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2006__116__299_0/} }
TY - JOUR AU - Labs, Oliver TI - A septic with 99 real nodes JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2006 SP - 299 EP - 313 VL - 116 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2006__116__299_0/ LA - en ID - RSMUP_2006__116__299_0 ER -
Labs, Oliver. A septic with 99 real nodes. Rendiconti del Seminario Matematico della Università di Padova, Tome 116 (2006), pp. 299-313. http://www.numdam.org/item/RSMUP_2006__116__299_0/
[1] Two Projective Surfaces with Many Nodes, Admitting the Symmetry of the Icosahedron, J. Algebraic Geom., 5, 1 (1996), pp. 173-186. | MR | Zbl
,[2] Examples of Projective Surface with Many Singularities, J. Algebraic Geom., 1, 2 (1992), pp. 191-196. | MR | Zbl
,[3] Simmetrische Flächen mit vielen gewöhnlichen Doppelpunkten, Ph.D. thesis, Fr.-A.-Universität Erlangen-Nürnberg, 1996.
,[4] A Projective Surface of Degree Eight with 168 Nodes, J. Algebraic Geom., 6, 2 (1997), pp. 325-334. | MR | Zbl
,[5] SURF 1.0.3, http://surf.sourceforge.net, 2001, A Computer Software for Visualising Real Algebraic Geometry.
,[6] Maximum number of singular points on a projective hypersurface, Funct. Anal. Appl., 17 (1984), pp. 223-225. | MR | Zbl
,[7] A Singular Introduction to Commutative Algebra, Springer-Verlag Berlin Heidelberg, 2002. | MR | Zbl
- ,[8] SINGULAR 2.0, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, Univ. Kaiserslautern, 2001, http://www.singular.uni.kl.de
- - ,[9] SURFEX - Visualization of Real Algebraic Surfaces, www.surfex.AlgebraicSurface.net, 2005.
- - ,[10] Über die Flächen vierten Grades mit sechzehn singulären Punkten, Collected Papers, vol. 2, Springer-Verlag (1975), pp. 418-432.
,[11] Algebraic Surface Homepage. Information, Images and Tools on Algebraic Surfaces, www.AlgebraicSurface.net, 2003.
,[12] A Sextic with 35 Cusps, Preprint, math.AG/0502520, 2005.
,[13] Hypersurfaces with Many Singularities, Ph.D. thesis, Johannes Gutenberg Universität Mainz, 2005, available from www.OliverLabs.net
,[14] The Maximal Number of Quotient Singularities on Surfaces with Given Numerical Invariants, Math. Ann., 268 (1984), pp. 159-171. | MR | Zbl
,[15] Die Flächen vierter Ordnung hinsichtlich ihrer Knotenpunkte und ihrer Gestaltung, Preisschriften der Fürstlich Jablonowski'schen Gesellschaft, no. IX, Leipzig, 1886. | JFM
,[16] Pencils of symmetric surfaces in P3 , J. Algebra, 246, 1 (2001), pp. 429-452. | MR | Zbl
,[17] On the Distribution of Surfaces of the Third Order into Species, in Reference to the Presence or Absence of Singular Points and the Reality of their Lines, Philos. Trans. Royal Soc., CLIII (1863), 193-241.
,[18] On the Semicontinuity of the Spectrum and an Upper Bound for the Number of Singular Points of a Projective Hypersurface, J. Soviet Math. 270, (1983), 735-739. | MR | Zbl
,[19] Enumeration of Combinations of Rational Double Points on Quartic Surfaces, AMS/IP Studies in Advanced Mathematics, 5 (1997), pp. 275-312. | MR | Zbl
,