@article{RSMUP_2006__116__187_0, author = {Fresnel, Jean and van der Put, Marius}, title = {Compact subgroups of $GL_n({\mathbb {C}})$}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {187--192}, publisher = {Seminario Matematico of the University of Padua}, volume = {116}, year = {2006}, mrnumber = {2287345}, zbl = {1115.22004}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2006__116__187_0/} }
TY - JOUR AU - Fresnel, Jean AU - van der Put, Marius TI - Compact subgroups of $GL_n({\mathbb {C}})$ JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2006 SP - 187 EP - 192 VL - 116 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2006__116__187_0/ LA - en ID - RSMUP_2006__116__187_0 ER -
%0 Journal Article %A Fresnel, Jean %A van der Put, Marius %T Compact subgroups of $GL_n({\mathbb {C}})$ %J Rendiconti del Seminario Matematico della Università di Padova %D 2006 %P 187-192 %V 116 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2006__116__187_0/ %G en %F RSMUP_2006__116__187_0
Fresnel, Jean; van der Put, Marius. Compact subgroups of $GL_n({\mathbb {C}})$. Rendiconti del Seminario Matematico della Università di Padova, Tome 116 (2006), pp. 187-192. http://www.numdam.org/item/RSMUP_2006__116__187_0/
[Bk] Groupes et algèbres de Lie, chapitre 8, Hermann.
,[Ba] Groups of integral representation type, Pacific Journal of mathematics, vol. 86, No 1, 1980. | MR | Zbl
,[C-R] Representation theory of finite groups and associative algebras, Wiley & sons, inc. 1962. | MR | Zbl
- ,[Fr] Algèbres des matrices, Hermann, 1997.
[F-H] Representation Theory, GTM 129, Springer Verlag, 1991. | MR | Zbl
- ,[M-T] Introduction à la théorie des groupes de Lie classiques, Hermann, 1986. | MR | Zbl
- ,[Pa] Sous-groupes elliptiques de groupes linéaires sur un corps valué, Journal of Lie Theory, 13, no 1 (2003), pp. 271-278. | MR | Zbl
,[S] Über Gruppen periodischer Substitutionen, Sitzber. Preuss. Akad. Wiss. (1911), pp. 619-627. | JFM