@article{RSMUP_2006__115__51_0, author = {Damian, Erika and Lucchini, Andrea}, title = {On the {Dirichlet} polynomial of finite group of {Lie} type}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {51--69}, publisher = {Seminario Matematico of the University of Padua}, volume = {115}, year = {2006}, mrnumber = {2245587}, zbl = {1167.20334}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2006__115__51_0/} }
TY - JOUR AU - Damian, Erika AU - Lucchini, Andrea TI - On the Dirichlet polynomial of finite group of Lie type JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2006 SP - 51 EP - 69 VL - 115 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2006__115__51_0/ LA - en ID - RSMUP_2006__115__51_0 ER -
%0 Journal Article %A Damian, Erika %A Lucchini, Andrea %T On the Dirichlet polynomial of finite group of Lie type %J Rendiconti del Seminario Matematico della Università di Padova %D 2006 %P 51-69 %V 115 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2006__115__51_0/ %G en %F RSMUP_2006__115__51_0
Damian, Erika; Lucchini, Andrea. On the Dirichlet polynomial of finite group of Lie type. Rendiconti del Seminario Matematico della Università di Padova, Tome 115 (2006), pp. 51-69. http://www.numdam.org/item/RSMUP_2006__115__51_0/
[1] The orders of the classical simple groups. Comm. Pure Appl. Math., 8 (1955), pp. 455-472. | MR | Zbl
,[2] The subgroups of PSL(3; q) for odd q. Trans. Amer. Math. Soc., 127 (1967), pp. 150-178. | MR | Zbl
,[3] The coset poset and probabilistic zeta function of a finite group. J. Algebra 225, 2 (2000), pp. 989-1012. | MR | Zbl
,[4] Simple groups of Lie type. Wiley Classics Library. John Wiley & Sons Inc., New York, 1989. Reprint of the 1972 original, A WileyInterscience Publication. | MR | Zbl
,[5] Atlas of finite groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups, With computational assistance from J. G. Thackray. | MR | Zbl
- - - - ,[6] E. DAMIAN, - A. LUCCHINI, The Dirichlet polynomial of a finite group and the subgroups of prime power index. In Advances in group theory 2002. Aracne, Rome, 2003, pp. 209-221. | MR | Zbl
[7] Recognizing the alternating groups from their probabilistic zeta function. Glasgow Math. J., 46 (2004), pp. 595-599. | MR | Zbl
- ,[8] E. DAMIAN, - A. LUCCHINI, The probabilistic zeta function of finite simple groups. J. Algebra, submitted. | MR | Zbl
[9] Some properties of the probabilistic zeta function on finite simple groups. Pacific J. Math., 215, 1 (2004), pp. 3-14. | MR | Zbl
- - ,[10] Recognizing soluble groups from their probabilistic zeta functions. Bull. London Math. Soc., 35, 5 (2003), pp. 659-664. | MR | Zbl
- ,[11] Permutation groups, vol. 163 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1996. | MR | Zbl
- ,[12] On large Zsigmondy primes. Proc. Amer. Math. Soc., 102, 1 (1988), pp. 29-36. | MR | Zbl
,[13] Linear groups with orders having certain large prime divisors. Proc. London Math. Soc. (3) 78, 1 (1999), pp. 167-214. | MR | Zbl
- - - ,[14] The eulerian functions of a group. Quart. J. Math., 7 (1936), pp. 134-151. | JFM
,[15] Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften, Band 134. Springer-Verlag, Berlin, 1967. | MR | Zbl
,[16] Composition factors from the group ring and Artin's theorem on orders of simple groups. Proc. London Math. Soc. (3) 60, 1 (1990), pp. 89-122. | MR | Zbl
- - - ,[17] The maximal factorizations of the finite simple groups and their automorphism groups. Mem. Amer. Math. Soc., 86, (1990), p. 432. | MR | Zbl
- - ,[18] Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. in Math., 28, 2 (1978), pp. 101-128. | MR | Zbl
,[19] The Steinberg character of a finite group with BN-pair. In Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968). Benjamin, New York, 1969, pp. 213-221. | MR | Zbl
,[20] Enumerative combinatorics. Vol. 1, vol. 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. | MR | Zbl
,[21] A class of doubly transitive permutation groups. In Proc. Internat. Congr. Mathematicians (Stockholm, 1962). Inst. Mittag-Leffler, Djursholm, 1963, pp. 285-287. | MR | Zbl
,[22] Zur Theorie der Potenzreste. Monatsh. Math. Phys., 3 (1892), pp. 265-284. | JFM | MR
,