@article{RSMUP_2005__113__179_0, author = {Pratelli, Aldo}, title = {How to show that some rays are maximal transport rays in {Monge} {Problem}}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {179--201}, publisher = {Seminario Matematico of the University of Padua}, volume = {113}, year = {2005}, mrnumber = {2168986}, zbl = {1150.49024}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2005__113__179_0/} }
TY - JOUR AU - Pratelli, Aldo TI - How to show that some rays are maximal transport rays in Monge Problem JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2005 SP - 179 EP - 201 VL - 113 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2005__113__179_0/ LA - en ID - RSMUP_2005__113__179_0 ER -
%0 Journal Article %A Pratelli, Aldo %T How to show that some rays are maximal transport rays in Monge Problem %J Rendiconti del Seminario Matematico della Università di Padova %D 2005 %P 179-201 %V 113 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2005__113__179_0/ %G en %F RSMUP_2005__113__179_0
Pratelli, Aldo. How to show that some rays are maximal transport rays in Monge Problem. Rendiconti del Seminario Matematico della Università di Padova, Tome 113 (2005), pp. 179-201. http://www.numdam.org/item/RSMUP_2005__113__179_0/
[1] Lecture Notes on Optimal Transport Problems, in Mathematical Aspects of Evolving Interfaces, Lecture Notes in Mathematics, LNM 1812, Springer (2003), pp. 1-52. | MR | Zbl
,[2] Existence and stability results in the L1 theory of optimal transportation, in Optimal Transportation and Applications, Lecture Notes in Mathematics, LNM 1813, Springer (2003), pp. 123-160. | MR | Zbl
- ,[3] Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press (2000). | MR | Zbl
- - ,[4] Characterization of optimal shapes and masses through Monge-Kantorovich Equation, J. Eur. Math. Soc., 3 (2001), pp. 139-168. | MR | Zbl
- ,[5] P. SEPPECHER, Shape optimization solutions via Monge-Kantorovich equation, C.R. Acad. Sci. Paris, 324-I (1997), pp. 1185-1191. | MR | Zbl
-[6] Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, 580, Springer (1977). | MR | Zbl
- ,[7] Differential equations methods for the MongeKantorovich mass transfer problem, Memoirs of the A.M.S., Vol. 137, Number 653, (1999). | MR | Zbl
- ,[8] Continuity of an optimal transport in Monge problem, to appear on JMPA. | MR | Zbl
, - ,[9] On the transfer of masses, Dokl. Akad. Nauk. SSSR, 37 (1942), pp. 227-229.
,[10] On a problem of Monge, Uspekhi Mat. Nauk., 3 (1948), pp. 225-226.
,[11] Memoire sur la Theorie des Déblais et des Remblais, Hist. de l'Acad. des Sciences de Paris (1781).
,[12] Existence of optimal transport maps and regularity of the transport density in mass transportation problems, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy (2003). Avalaible on http://cvgmt.sns.it/ .
,[13] Mass Transportation Problems, SpringerVerlag (1998).
- ,