Large integer polynomials in several variables
Rendiconti del Seminario Matematico della Università di Padova, Tome 112 (2004), pp. 165-172.
@article{RSMUP_2004__112__165_0,
     author = {Dubickas, A.},
     title = {Large integer polynomials in several variables},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {165--172},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {112},
     year = {2004},
     mrnumber = {2109959},
     zbl = {1167.11303},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2004__112__165_0/}
}
TY  - JOUR
AU  - Dubickas, A.
TI  - Large integer polynomials in several variables
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2004
SP  - 165
EP  - 172
VL  - 112
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2004__112__165_0/
LA  - en
ID  - RSMUP_2004__112__165_0
ER  - 
%0 Journal Article
%A Dubickas, A.
%T Large integer polynomials in several variables
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2004
%P 165-172
%V 112
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2004__112__165_0/
%G en
%F RSMUP_2004__112__165_0
Dubickas, A. Large integer polynomials in several variables. Rendiconti del Seminario Matematico della Università di Padova, Tome 112 (2004), pp. 165-172. http://www.numdam.org/item/RSMUP_2004__112__165_0/

[1] F. Amoroso, Sur des polynômes de petites mesures de Mahler, C. R. Acad. Sci. Paris, 321 (1995), pp. 11-14. | MR | Zbl

[2] F. Amoroso, Algebraic numbers close to 1 and variants of Mahler's measure, J. Number Theory, 60 (1996), pp. 80-96. | MR | Zbl

[3] F. Amoroso, Algebraic numbers close to 1: results and methods, in: Number Theory, Tiruchirapalli, 1996 (V.K. Murthy, M. Waldschmidt eds.), Contemporary Mathematics 210, Amer. Math. Soc., Providence, RI, 1998, pp. 305-316. | MR | Zbl

[4] F. Amoroso, Upper bounds for the resultant and diophantine applications, in: Number Theory: Diophantine, Computational and Algebraic Aspects, Eger, 1996 (K. Györy, A. Pethö, V.T. Sós eds.), Walter de Gruyter, Berlin, 1998, pp. 23-36. | MR | Zbl

[5] F. Amoroso - S. David, Minoration de la hauteur normalisée des hypersurfaces, Acta Arith., 92 (2000), pp. 339-366. | MR | Zbl

[6] F. Amoroso - M. Mignotte, Upper bounds for the coefficients of irreducible integer polynomials in several variables, Acta Arith., 99 (2001), pp. 1-12. | MR | Zbl

[7] Y. Bugeaud, Algebraic numbers close to 1 in non-archimedean metrics, The Ramanujan J., 2 (1998), pp. 449-457. | MR | Zbl

[8] A. Dubickas, On algebraic numbers close to 1, Bull. Australian Math. Soc., 58 (1998), pp. 423-434. | MR | Zbl

[9] A. Dubickas, On certain geometric mean of the values of a polynomial, Liet. Matem. Rink., 40 (2000), pp. 17-27. | MR | Zbl

[10] A. Dubickas, Three problems for polynomials of small measure, Acta Arith., 98 (2001), pp. 279-292. | MR | Zbl

[11] G. Everest - T. Ward, Heights of polynomials and entropy in algebraic dynamics, London, Springer, 1999. | MR | Zbl

[12] K. Mahler, On the zeros of the derivative of a polynomial, Proc. Roy. Soc. London, Ser. A, 264 (1961), pp. 145-154. | MR | Zbl

[13] M. Mignotte, On algebraic integers of small measure, Colloq. Math. Soc. János Bolyai, 34 (1981), pp. 1069-1077. | MR | Zbl

[14] M. Mignotte, An inequality about irreducible factors of integer polynomials, J. Number Theory, 30 (1988), pp. 156-166. | MR | Zbl

[15] M. Mignotte - M. Waldschmidt, On algebraic numbers of small height: linear forms in one logarithm, J. Number Theory, 47 (1994), pp. 43-62. | MR | Zbl

[16] A. Schinzel, Polynomials with special regard to reducibility, Encyclopedia of Mathematics and Its Applications 77, Cambridge, Cambridge University Press, 2000. | MR | Zbl

[17] W. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Berlin-Heidelberg-New York, Springer, 1980. | MR | Zbl