Differential and geometric structure for the tangent bundle of a projective limit manifold
Rendiconti del Seminario Matematico della Università di Padova, Tome 112 (2004), pp. 103-115.
@article{RSMUP_2004__112__103_0,
     author = {Galanis, George N.},
     title = {Differential and geometric structure for the tangent bundle of a projective limit manifold},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {103--115},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {112},
     year = {2004},
     mrnumber = {2109955},
     zbl = {1121.58007},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2004__112__103_0/}
}
TY  - JOUR
AU  - Galanis, George N.
TI  - Differential and geometric structure for the tangent bundle of a projective limit manifold
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2004
SP  - 103
EP  - 115
VL  - 112
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2004__112__103_0/
LA  - en
ID  - RSMUP_2004__112__103_0
ER  - 
%0 Journal Article
%A Galanis, George N.
%T Differential and geometric structure for the tangent bundle of a projective limit manifold
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2004
%P 103-115
%V 112
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2004__112__103_0/
%G en
%F RSMUP_2004__112__103_0
Galanis, George N. Differential and geometric structure for the tangent bundle of a projective limit manifold. Rendiconti del Seminario Matematico della Università di Padova, Tome 112 (2004), pp. 103-115. http://www.numdam.org/item/RSMUP_2004__112__103_0/

[1] G. Galanis, On a type of linear differential equations in Fréchet spaces, Annali della Scuola Normale Superiore di Pisa, 4, No. 24 (1997), pp. 501-510. | Numdam | MR | Zbl

[2] G. Galanis - E. Vassiliou, A Floquet-Liapunov theorem in Fréchet spaces, Annali della Scuola Normale Superiore di Pisa (4), 27 (1998), pp. 427-436. | Numdam | MR | Zbl

[3] G. Galanis, Projective limits of Banach-Lie groups, Periodica Mathematica Hungarica, 32 (1996), pp. 179-191. | MR | Zbl

[4] R. S. Hamilton, The inverse functions theorem of Nash and Moser, Bull. of Amer. Math. Soc., 7 (1982), pp. 65-222. | MR | Zbl

[5] J. A. Leslie, On a differential structure for the group of diffeomorphisms, Topology, 46 (1967), pp. 263-271. | MR | Zbl

[6] M. C. Abbati - A. Manià, On differential structure for projective limits of manifolds, J. Geom. Phys., 29, no. 1-2 (1999), pp. 35-63. | MR | Zbl

[7] A. Kriegl - P. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs, 53 American Mathematical Society. | MR | Zbl

[8] H. Omori, Infinite Dimensional Lie Transformation Groups, Lecture Notes in Mathematics, 427 (1974), Springer-Verlag. | MR | Zbl

[9] H. H. Schaeffer, Topological Vector Spaces, Springer, Berlin, 1980. | MR | Zbl

[10] M. E. Verona, Maps and forms on generalised manifolds, St. Cerc. Mat., 26 (1974), pp. 133-143 (in romanian). | MR

[11] M. E. Verona, A de Rham Theorem for generalised manifolds, Proc. Edinburg Math. Soc., 22 (1979), pp. 127-135. | MR | Zbl

[12] J. Vilms, Connections on tangent bundles, J. Diff. Geom., 41 (1967), pp. 235-243. | MR | Zbl